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Chapter 1

Introduction

1.1 What is the LibTomCrypt?

LibTomCrypt is a portable ISO C cryptographic library meant to be a tool set for cryptographers
who are designing cryptosystems. It supports symmetric ciphers, one-way hashes, pseudo-random
number generators, public key cryptography (via PKCS #1 RSA, DH or ECCDH), and a plethora
of support routines.

The library was designed such that new ciphers/hashes/PRNGs can be added at run-time and
the existing API (and helper API functions) are able to use the new designs automatically. There
exists self-check functions for each block cipher and hash function to ensure that they compile and
execute to the published design specifications. The library also performs extensive parameter error
checking to prevent any number of run-time exploits or errors.

1.2 Why did I write it?

You may be wondering, Tom, why did you write a crypto library. I already have one. Well the
reason falls into two categories:

1. I am too lazy to figure out someone else’s API. I’d rather invent my own simpler API and use
that.

2. It was (still is) good coding practice.

The idea is that I am not striving to replace OpenSSL or Crypto++ or Cryptlib or etc. I’m
trying to write my own crypto library and hopefully along the way others will appreciate the work.

With this library all core functions (ciphers, hashes, prngs, and bignum) have the same prototype
definition. They all load and store data in a format independent of the platform. This means if you
encrypt with Blowfish on a PPC it should decrypt on an x86 with zero problems. The consistent
API also means that if you learn how to use Blowfish with the library you know how to use Safer+,
RC6, or Serpent as well. With all of the core functions there are central descriptor tables that can
be used to make a program automatically pick between ciphers, hashes and PRNGs at run-time.
That means your application can support all ciphers/hashes/prngs/bignum without changing the
source code.

1
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Not only did I strive to make a consistent and simple API to work with but I also attempted
to make the library configurable in terms of its build options. Out of the box the library will build
with any modern version of GCC without having to use configure scripts. This means that the
library will work with platforms where development tools may be limited (e.g. no autoconf).

On top of making the build simple and the API approachable I’ve also attempted for a reasonably
high level of robustness and efficiency. LibTomCrypt traps and returns a series of errors ranging
from invalid arguments to buffer overflows/overruns. It is mostly thread safe and has been clocked
on various platforms with cycles per byte timings that are comparable (and often favourable) to
other libraries such as OpenSSL and Crypto++.

1.2.1 Modular

The LibTomCrypt package has also been written to be very modular. The block ciphers, one–way
hashes, pseudo–random number generators (PRNG), and bignum math routines are all used within
the API through descriptor tables which are essentially structures with pointers to functions. While
you can still call particular functions directly (e.g. sha256 process()) this descriptor interface allows
the developer to customize their usage of the library.

For example, consider a hardware platform with a specialized RNG device. Obviously one would
like to tap that for the PRNG needs within the library (e.g. making a RSA key). All the developer
has to do is write a descriptor and the few support routines required for the device. After that
the rest of the API can make use of it without change. Similarly imagine a few years down the
road when AES2 (or whatever they call it) has been invented. It can be added to the library and
used within applications with zero modifications to the end applications provided they are written
properly.

This flexibility within the library means it can be used with any combination of primitive
algorithms and unlike libraries like OpenSSL is not tied to direct routines. For instance, in OpenSSL
there are CBC block mode routines for every single cipher. That means every time you add or
remove a cipher from the library you have to update the associated support code as well. In
LibTomCrypt the associated code (chaining modes in this case) are not directly tied to the ciphers.
That is a new cipher can be added to the library by simply providing the key setup, ECB decrypt
and encrypt and test vector routines. After that all five chaining mode routines can make use of
the cipher right away.

1.3 License

The project is hereby released as public domain.

1.4 Patent Disclosure

The author (Tom St Denis) is not a patent lawyer so this section is not to be treated as legal advice.
To the best of the author’s knowledge the only patent related issues within the library are the RC5
and RC6 symmetric block ciphers. They can be removed from a build by simply commenting out
the two appropriate lines in tomcrypt custom.h. The rest of the ciphers and hashes are patent free
or under patents that have since expired.
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The RC2 and RC4 symmetric ciphers are not under patents but are under trademark regulations.
This means you can use the ciphers you just can’t advertise that you are doing so.

1.5 Thanks

I would like to give thanks to the following people (in no particular order) for helping me develop
this project from early on:

1. Richard van de Laarschot

2. Richard Heathfield

3. Ajay K. Agrawal

4. Brian Gladman

5. Svante Seleborg

6. Clay Culver

7. Jason Klapste

8. Dobes Vandermeer

9. Daniel Richards

10. Wayne Scott

11. Andrew Tyler

12. Sky Schulz

13. Christopher Imes

There have been quite a few other people as well. Please check the change log to see who else
has contributed from time to time.
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Chapter 2

The Application Programming
Interface (API)

2.1 Introduction

In general the API is very simple to memorize and use. Most of the functions return either void
or int. Functions that return int will return CRYPT OK if the function was successful, or one
of the many error codes if it failed. Certain functions that return int will return −1 to indicate an
error. These functions will be explicitly commented upon. When a function does return a CRYPT
error code it can be translated into a string with

const char *error_to_string(int err);

An example of handling an error is:

void somefunc(void)

{

int err;

/* call a cryptographic function */

if ((err = some_crypto_function(...)) != CRYPT_OK) {

printf("A crypto error occurred, %s\n", error_to_string(err));

/* perform error handling */

}

/* continue on if no error occurred */

}

There is no initialization routine for the library and for the most part the code is thread safe.
The only thread related issue is if you use the same symmetric cipher, hash or public key state data
in multiple threads. Normally that is not an issue.

To include the prototypes for LibTomCrypt.a into your own program simply include tomcrypt.h
like so:

#include <tomcrypt.h>

int main(void) {

5
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return 0;

}

The header file tomcrypt.h also includes stdio.h, string.h, stdlib.h, time.h and ctype.h.

2.2 Macros

There are a few helper macros to make the coding process a bit easier. The first set are related to
loading and storing 32/64-bit words in little/big endian format. The macros are:
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STORE32L(x, y) ulong32 x, unsigned char *y x→ y[0 . . . 3]

STORE64L(x, y) ulong64 x, unsigned char *y x→ y[0 . . . 7]

LOAD32L(x, y) ulong32 x, unsigned char *y y[0 . . . 3]→ x

LOAD64L(x, y) ulong64 x, unsigned char *y y[0 . . . 7]→ x

STORE32H(x, y) ulong32 x, unsigned char *y x→ y[3 . . . 0]

STORE64H(x, y) ulong64 x, unsigned char *y x→ y[7 . . . 0]

LOAD32H(x, y) ulong32 x, unsigned char *y y[3 . . . 0]→ x

LOAD64H(x, y) ulong64 x, unsigned char *y y[7 . . . 0]→ x

BSWAP(x) ulong32 x Swap bytes

Figure 2.1: Load And Store Macros

There are 32 and 64-bit cyclic rotations as well:

ROL(x, y) ulong32 x, ulong32 y x << y, 0 ≤ y ≤ 31

ROLc(x, y) ulong32 x, const ulong32 y x << y, 0 ≤ y ≤ 31

ROR(x, y) ulong32 x, ulong32 y x >> y, 0 ≤ y ≤ 31

RORc(x, y) ulong32 x, const ulong32 y x >> y, 0 ≤ y ≤ 31

ROL64(x, y) ulong64 x, ulong64 y x << y, 0 ≤ y ≤ 63

ROL64c(x, y) ulong64 x, const ulong64 y x << y, 0 ≤ y ≤ 63

ROR64(x, y) ulong64 x, ulong64 y x >> y, 0 ≤ y ≤ 63

ROR64c(x, y) ulong64 x, const ulong64 y x >> y, 0 ≤ y ≤ 63

Figure 2.2: Rotate Macros

2.3 Functions with Variable Length Output

Certain functions such as (for example) rsa export() give an output that is variable length. To
prevent buffer overflows you must pass it the length of the buffer where the output will be stored.
For example:

#include <tomcrypt.h>

int main(void) {

rsa_key key;

unsigned char buffer[1024];

unsigned long x;

int err;

/* ... Make up the RSA key somehow ... */

/* lets export the key, set x to the size of the

* output buffer */

x = sizeof(buffer);

if ((err = rsa_export(buffer, &x, PK_PUBLIC, &key)) != CRYPT_OK) {

printf("Export error: %s\n", error_to_string(err));

return -1;
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}

/* if rsa_export() was successful then x will have

* the size of the output */

printf("RSA exported key takes %d bytes\n", x);

/* ... do something with the buffer */

return 0;

}

In the above example if the size of the RSA public key was more than 1024 bytes this function would
return an error code indicating a buffer overflow would have occurred. If the function succeeds,
it stores the length of the output back into x so that the calling application will know how many
bytes were used.

As of v1.13, most functions will update your length on failure to indicate the size required by
the function. Not all functions support this so please check the source before you rely on it doing
that.

2.4 Functions that need a PRNG

Certain functions such as rsa make key() require a Pseudo Random Number Generator (PRNG).
These functions do not setup the PRNG themselves so it is the responsibility of the calling function
to initialize the PRNG before calling them.

Certain PRNG algorithms do not require a prng state argument (sprng for example). The
prng state argument may be passed as NULL in such situations.

#include <tomcrypt.h>

int main(void) {

rsa_key key;

int err;

/* register the system RNG */

register_prng(&sprng_desc)

/* make a 1024-bit RSA key with the system RNG */

if ((err = rsa_make_key(NULL, find_prng("sprng"), 1024/8, 65537, &key))

!= CRYPT_OK) {

printf("make_key error: %s\n", error_to_string(err));

return -1;

}

/* use the key ... */

return 0;

}
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2.5 Functions that use Arrays of Octets

Most functions require inputs that are arrays of the data type unsigned char. Whether it is a
symmetric key, IV for a chaining mode or public key packet it is assumed that regardless of the
actual size of unsigned char only the lower eight bits contain data. For example, if you want to
pass a 256 bit key to a symmetric ciphers setup routine, you must pass in (a pointer to) an array of
32 unsigned char variables. Certain routines (such as SAFER+) take special care to work properly
on platforms where an unsigned char is not eight bits.

For the purposes of this library, the term byte will refer to an octet or eight bit word. Typically
an array of type byte will be synonymous with an array of type unsigned char.
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Chapter 3

Symmetric Block Ciphers

3.1 Core Functions

LibTomCrypt provides several block ciphers with an ECB block mode interface. It is important to
first note that you should never use the ECB modes directly to encrypt data. Instead you should
use the ECB functions to make a chaining mode, or use one of the provided chaining modes. All of
the ciphers are written as ECB interfaces since it allows the rest of the API to grow in a modular
fashion.

3.1.1 Key Scheduling

All ciphers store their scheduled keys in a single data type called symmetric key. This allows all
ciphers to have the same prototype and store their keys as naturally as possible. This also removes
the need for dynamic memory allocation, and allows you to allocate a fixed sized buffer for storing
scheduled keys. All ciphers must provide six visible functions which are (given that XXX is the
name of the cipher) the following:

int XXX_setup(const unsigned char *key,

int keylen,

int rounds,

symmetric_key *skey);

The XXX setup() routine will setup the cipher to be used with a given number of rounds and
a given key length (in bytes). The number of rounds can be set to zero to use the default, which is
generally a good idea.

If the function returns successfully the variable skey will have a scheduled key stored in it. It’s
important to note that you should only used this scheduled key with the intended cipher. For
example, if you call blowfish setup() do not pass the scheduled key onto rc5 ecb encrypt(). All
built–in setup functions do not allocate memory off the heap so when you are done with a key you
can simply discard it (e.g. they can be on the stack). However, to maintain proper coding practices
you should always call the respective XXX done() function. This allows for quicker porting to
applications with externally supplied plugins.

11
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3.1.2 ECB Encryption and Decryption

To encrypt or decrypt a block in ECB mode there are these two functions per cipher:

int XXX_ecb_encrypt(const unsigned char *pt,

unsigned char *ct,

symmetric_key *skey);

int XXX_ecb_decrypt(const unsigned char *ct,

unsigned char *pt,

symmetric_key *skey);

These two functions will encrypt or decrypt (respectively) a single block of text1, storing the result
in the ct buffer (pt resp.). It is possible that the input and output buffer are the same buffer.
For the encrypt function pt2 is the input and ct3 is the output. For the decryption function it’s
the opposite. They both return CRYPT OK on success. To test a particular cipher against test
vectors4 call the following self-test function.

3.1.3 Self–Testing

int XXX_test(void);

This function will return CRYPT OK if the cipher matches the test vectors from the design
publication it is based upon.

3.1.4 Key Sizing

For each cipher there is a function which will help find a desired key size. It is specified as follows:

int XXX_keysize(int *keysize);

Essentially, it will round the input keysize in keysize down to the next appropriate key size. This
function will return CRYPT OK if the key size specified is acceptable. For example:

#include <tomcrypt.h>

int main(void)

{

int keysize, err;

/* now given a 20 byte key what keysize does Twofish want to use? */

keysize = 20;

if ((err = twofish_keysize(&keysize)) != CRYPT_OK) {

printf("Error getting key size: %s\n", error_to_string(err));

return -1;

}

printf("Twofish suggested a key size of %d\n", keysize);

return 0;

}

1The size of which depends on which cipher you are using.
2pt stands for plaintext.
3ct stands for ciphertext.
4As published in their design papers.
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This should indicate a keysize of sixteen bytes is suggested by storing 16 in keysize.

3.1.5 Cipher Termination

When you are finished with a cipher you can de–initialize it with the done function.

void XXX_done(symmetric_key *skey);

For the software based ciphers within LibTomCrypt, these functions will not do anything. However,
user supplied cipher descriptors may require to be called for resource management purposes. To be
compliant, all functions which call a cipher setup function must also call the respective cipher done
function when finished.

3.1.6 Simple Encryption Demonstration

An example snippet that encodes a block with Blowfish in ECB mode.

#include <tomcrypt.h>

int main(void)

{

unsigned char pt[8], ct[8], key[8];

symmetric_key skey;

int err;

/* ... key is loaded appropriately in key ... */

/* ... load a block of plaintext in pt ... */

/* schedule the key */

if ((err = blowfish_setup(key, /* the key we will use */

8, /* key is 8 bytes (64-bits) long */

0, /* 0 == use default # of rounds */

&skey) /* where to put the scheduled key */

) != CRYPT_OK) {

printf("Setup error: %s\n", error_to_string(err));

return -1;

}

/* encrypt the block */

blowfish_ecb_encrypt(pt, /* encrypt this 8-byte array */

ct, /* store encrypted data here */

&skey); /* our previously scheduled key */

/* now ct holds the encrypted version of pt */

/* decrypt the block */

blowfish_ecb_decrypt(ct, /* decrypt this 8-byte array */

pt, /* store decrypted data here */

&skey); /* our previously scheduled key */

/* now we have decrypted ct to the original plaintext in pt */
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/* Terminate the cipher context */

blowfish_done(&skey);

return 0;

}

3.2 Key Sizes and Number of Rounds

As a general rule of thumb, do not use symmetric keys under 80 bits if you can help it. Only a few of
the ciphers support smaller keys (mainly for test vectors anyways). Ideally, your application should
be making at least 256 bit keys. This is not because you are to be paranoid. It is because if your
PRNG has a bias of any sort the more bits the better. For example, if you have Pr [X = 1] = 1

2 ± γ
where |γ| > 0 then the total amount of entropy in N bits is N · −log2

(
1
2 + |γ|

)
. So if γ were 0.25 (a

severe bias) a 256-bit string would have about 106 bits of entropy whereas a 128-bit string would
have only 53 bits of entropy.

The number of rounds of most ciphers is not an option you can change. Only RC5 allows you
to change the number of rounds. By passing zero as the number of rounds all ciphers will use their
default number of rounds. Generally the ciphers are configured such that the default number of
rounds provide adequate security for the given block and key size.

3.3 The Cipher Descriptors

To facilitate automatic routines an array of cipher descriptors is provided in the array cipher descriptor.
An element of this array has the following (partial) format (See Section 18.2):

struct _cipher_descriptor {

/** name of cipher */

char *name;

/** internal ID */

unsigned char ID;

/** min keysize (octets) */

int min_key_length,

/** max keysize (octets) */

max_key_length,

/** block size (octets) */

block_length,

/** default number of rounds */

default_rounds;

...<snip>...

};
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Where name is the lower case ASCII version of the name. The fields min key length and
max key length are the minimum and maximum key sizes in bytes. The block length member is the
block size of the cipher in bytes. As a good rule of thumb it is assumed that the cipher supports
the min and max key lengths but not always everything in between. The default rounds field is the
default number of rounds that will be used.

For a plugin to be compliant it must provide at least each function listed before the accelerators
begin. Accelerators are optional, and if missing will be emulated in software.

The remaining fields are all pointers to the core functions for each cipher. The end of the
cipher descriptor array is marked when name equals NULL.

As of this release the current cipher descriptors elements are the following:

Name Descriptor Name Block Size Key Range Rounds

Blowfish blowfish desc 8 8 . . . 56 16

X-Tea xtea desc 8 16 32

RC2 rc2 desc 8 5 . . . 128 16

RC5-32/12/b rc5 desc 8 8 . . . 128 12 . . . 24

RC6-32/20/b rc6 desc 16 8 . . . 128 20

SAFER+ saferp desc 16 16, 24, 32 8, 12, 16

AES aes desc 16 16, 24, 32 10, 12, 14
aes enc desc 16 16, 24, 32 10, 12, 14

Twofish twofish desc 16 16, 24, 32 16

DES des desc 8 8 16

3DES (EDE mode) des3 desc 8 16, 24 16

CAST5 (CAST-128) cast5 desc 8 5 . . . 16 12, 16

Noekeon noekeon desc 16 16 16

Skipjack skipjack desc 8 10 32

Anubis anubis desc 16 16 . . . 40 12 . . . 18

Khazad khazad desc 8 16 8

SEED kseed desc 16 16 16

KASUMI kasumi desc 8 16 8

Camellia camellia desc 16 16, 24, 32 18, 24

IDEA idea desc 8 16 8

Serpent serpent desc 16 16, 24, 32 32

Figure 3.1: Built–In Software Ciphers
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3.3.1 Notes

1. For AES, (also known as Rijndael) there are four descriptors which complicate issues a little. The
descriptors rijndael desc and rijndael enc desc provide the cipher named rijndael. The descriptors
aes desc and aes enc desc provide the cipher name aes. Functionally both rijndael and aes are the
same cipher. The only difference is when you call find cipher() you have to pass the correct name. The
cipher descriptors with enc in the middle (e.g. rijndael enc desc) are related to an implementation of
Rijndael with only the encryption routine and tables. The decryption and self–test function pointers
of both encrypt only descriptors are set to NULL and should not be called.

The encrypt only descriptors are useful for applications that only use the encryption function of the
cipher. Algorithms such as EAX, PMAC and OMAC only require the encryption function. So far
this encrypt only functionality has only been implemented for Rijndael as it makes the most sense
for this cipher.

2. Note that for DES and 3DES they use 8 and 24 byte keys but only 7 and 21 [respectively] bytes of
the keys are in fact used for the purposes of encryption. My suggestion is just to use random 8/24
byte keys instead of trying to make a 8/24 byte string from the real 7/21 byte key.

For 3DES exists a two-key mode, that can be initialized by calling the setup function with a keylen
of 16. This results in the re-usage of key K1 as key K3. This mode has been specified as Keying
Option 2 in FIPS 46-3.

3. Note that Twofish has additional configuration options (Figure 3.2) that take place at build time.
These options are found in the file tomcrypt cfg.h. The first option is TWOFISH SMALL which when
defined will force the Twofish code to not pre-compute the Twofish g(X) function as a set of four
8× 32 s-boxes. This means that a scheduled key will require less ram but the resulting cipher will be
slower. The second option is TWOFISH TABLES which when defined will force the Twofish code to
use pre-computed tables for the two s-boxes q0, q1 as well as the multiplication by the polynomials 5B
and EF used in the MDS multiplication. As a result the code is faster and slightly larger. The speed
increase is useful when TWOFISH SMALL is defined since the s-boxes and MDS multiply form the
heart of the Twofish round function.

TWOFISH SMALL TWOFISH TABLES Speed and Memory (per key)

undefined undefined Very fast, 4.2KB of ram.

undefined defined Faster key setup, larger code.

defined undefined Very slow, 0.2KB of ram.

defined defined Faster, 0.2KB of ram, larger code.

Figure 3.2: Twofish Build Options

4. As of v1.18.0 of the library RC2 got an extended setup function (which didn’t fit in the regular API):

int rc2_setup_ex(const unsigned char *key,

int keylen,

int bits,

int num_rounds,

symmetric_key *skey);

This setup function also allows to configure the effective key length in bits of the RC2 cipher as in
its original specification.

To work with the cipher descriptor array there is a function:

int find_cipher(char *name)
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Which will search for a given name in the array. It returns −1 if the cipher is not found, otherwise
it returns the location in the array where the cipher was found. For example, to indirectly setup
Blowfish you can also use:

#include <tomcrypt.h>

int main(void)

{

unsigned char key[8];

symmetric_key skey;

int err;

/* you must register a cipher before you use it */

if (register_cipher(&blowfish_desc)) == -1) {

printf("Unable to register Blowfish cipher.");

return -1;

}

/* generic call to function (assuming the key

* in key[] was already setup) */

if ((err =

cipher_descriptor[find_cipher("blowfish")].

setup(key, 8, 0, &skey)) != CRYPT_OK) {

printf("Error setting up Blowfish: %s\n", error_to_string(err));

return -1;

}

/* ... use cipher ... */

}

A good safety would be to check the return value of find cipher() before accessing the desired
function. In order to use a cipher with the descriptor table you must register it first using:

int register_cipher(const struct _cipher_descriptor *cipher);

Which accepts a pointer to a descriptor and returns the index into the global descriptor table. If
an error occurs such as there is no more room (it can have 32 ciphers at most) it will return -1. If
you try to add the same cipher more than once it will just return the index of the first copy. To
remove a cipher call:

int unregister_cipher(const struct _cipher_descriptor *cipher);

Which returns CRYPT OK if it removes the cipher, otherwise it returns CRYPT ERROR.

#include <tomcrypt.h>

int main(void)

{

int err;

/* register the cipher */

if (register_cipher(&rijndael_desc) == -1) {

printf("Error registering Rijndael\n");

return -1;
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}

/* use Rijndael */

/* remove it */

if ((err = unregister_cipher(&rijndael_desc)) != CRYPT_OK) {

printf("Error removing Rijndael: %s\n", error_to_string(err));

return -1;

}

return 0;

}

This snippet is a small program that registers Rijndael.

3.4 Symmetric Modes of Operations

3.4.1 Background

A typical symmetric block cipher can be used in chaining modes to effectively encrypt messages
larger than the block size of the cipher. Given a key k, a plaintext P and a cipher E we shall
denote the encryption of the block P under the key k as Ek(P ). In some modes there exists an
initialization vector denoted as C−1.

ECB Mode

ECB or Electronic Codebook Mode is the simplest method to use. It is given as:

Ci = Ek(Pi) (3.1)

This mode is very weak since it allows people to swap blocks and perform replay attacks if the same
key is used more than once.

CBC Mode

CBC or Cipher Block Chaining mode is a simple mode designed to prevent trivial forms of replay
and swap attacks on ciphers. It is given as:

Ci = Ek(Pi ⊕ Ci−1) (3.2)

It is important that the initialization vector be unique and preferably random for each message
encrypted under the same key.

CTR Mode

CTR or Counter Mode is a mode which only uses the encryption function of the cipher. Given a
initialization vector which is treated as a large binary counter the CTR mode is given as:

C−1 = C−1 + 1 (mod 2W )

Ci = Pi ⊕ Ek(C−1) (3.3)
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Where W is the size of a block in bits (e.g. 64 for Blowfish). As long as the initialization vector
is random for each message encrypted under the same key replay and swap attacks are infeasible.
CTR mode may look simple but it is as secure as the block cipher is under a chosen plaintext attack
(provided the initialization vector is unique).

CFB Mode

CFB or Ciphertext Feedback Mode is a mode akin to CBC. It is given as:

Ci = Pi ⊕ C−1
C−1 = Ek(Ci) (3.4)

Note that in this library the output feedback width is equal to the size of the block cipher. That is
this mode is used to encrypt whole blocks at a time. However, the library will buffer data allowing
the user to encrypt or decrypt partial blocks without a delay. When this mode is first setup it will
initially encrypt the initialization vector as required.

OFB Mode

OFB or Output Feedback Mode is a mode akin to CBC as well. It is given as:

C−1 = Ek(C−1)

Ci = Pi ⊕ C−1 (3.5)

Like the CFB mode the output width in CFB mode is the same as the width of the block cipher.
OFB mode will also buffer the output which will allow you to encrypt or decrypt partial blocks
without delay.

3.4.2 Choice of Mode

My personal preference is for the CTR mode since it has several key benefits:

1. No short cycles which is possible in the OFB and CFB modes.

2. Provably as secure as the block cipher being used under a chosen plaintext attack.

3. Technically does not require the decryption routine of the cipher.

4. Allows random access to the plaintext.

5. Allows the encryption of block sizes that are not equal to the size of the block cipher.

The CTR, CFB and OFB routines provided allow you to encrypt block sizes that differ from the
ciphers block size. They accomplish this by buffering the data required to complete a block. This
allows you to encrypt or decrypt any size block of memory with either of the three modes.

The ECB and CBC modes process blocks of the same size as the cipher at a time. Therefore,
they are less flexible than the other modes.
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3.4.3 Ciphertext Stealing

Ciphertext stealing is a method of dealing with messages in CBC mode which are not a multiple
of the block length. This is accomplished by encrypting the last ciphertext block in ECB mode,
and XOR’ing the output against the last partial block of plaintext. LibTomCrypt does not support
this mode directly but it is fairly easy to emulate with a call to the cipher’s ecb encrypt() callback
function.

The more sane way to deal with partial blocks is to pad them with zeroes, and then use CBC
normally.

3.4.4 Initialization

The library provides simple support routines for handling CBC, CTR, CFB, OFB and ECB encoded
messages. Assuming the mode you want is XXX there is a structure called symmetric XXX that
will contain the information required to use that mode. They have identical setup routines (except
CTR and ECB mode):

int XXX_start( int cipher,

const unsigned char *IV,

const unsigned char *key,

int keylen,

int num_rounds,

symmetric_XXX *XXX);

int ctr_start( int cipher,

const unsigned char *IV,

const unsigned char *key,

int keylen,

int num_rounds,

int ctr_mode,

symmetric_CTR *ctr);

int ecb_start( int cipher,

const unsigned char *key,

int keylen,

int num_rounds,

symmetric_ECB *ecb);

In each case, cipher is the index into the cipher descriptor array of the cipher you want to
use. The IV value is the initialization vector to be used with the cipher. You must fill the IV
yourself and it is assumed they are the same length as the block size5 of the cipher you choose. It
is important that the IV be random for each unique message you want to encrypt. The parameters
key, keylen and num rounds are the same as in the XXX setup() function call. The final parameter
is a pointer to the structure you want to hold the information for the mode of operation.

The routines return CRYPT OK if the cipher initialized correctly, otherwise, they return an
error code.

5In other words the size of a block of plaintext for the cipher, e.g. 8 for DES, 16 for AES, etc.
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CTR Mode

In the case of CTR mode there is an additional parameter ctr mode which specifies the mode that
the counter is to be used in. If CTR COUNTER LITTLE ENDIAN was specified then the
counter will be treated as a little endian value. Otherwise, if CTR COUNTER BIG ENDIAN
was specified the counter will be treated as a big endian value. As of v1.15 the RFC 3686 style of
increment then encrypt is also supported. By OR’ing LTC CTR RFC3686 with the CTR mode
value, ctr start() will increment the counter before encrypting it for the first time.

As of V1.17, the library supports variable length counters for CTR mode. The (optional) counter
length is specified by OR’ing the octet length of the counter against the ctr mode parameter. The
default, zero, indicates that a full block length counter will be used. This also ensures backwards
compatibility with software that uses older versions of the library.

symmetric_CTR ctr;

int err;

unsigned char IV[16], key[16];

/* use a 32-bit little endian counter */

if ((err = ctr_start(find_cipher("aes"),

IV, key, 16, 0,

CTR_COUNTER_LITTLE_ENDIAN | 4,

&ctr)) != CRYPT_OK) {

handle_error(err);

}

Changing the counter size has little (really no) effect on the performance of the CTR chaining
mode. It is provided for compatibility with other software (and hardware) which have smaller fixed
sized counters.

3.4.5 Encryption and Decryption

To actually encrypt or decrypt the following routines are provided:

int XXX_encrypt(const unsigned char *pt,

unsigned char *ct,

unsigned long len,

symmetric_YYY *YYY);

int XXX_decrypt(const unsigned char *ct,

unsigned char *pt,

unsigned long len,

symmetric_YYY *YYY);

Where XXX is one of {ecb, cbc, ctr, cfb, ofb}.
In all cases, len is the size of the buffer (as number of octets) to encrypt or decrypt. The

CTR, OFB and CFB modes are order sensitive but not chunk sensitive. That is you can encrypt
ABCDEF in three calls like AB, CD, EF or two like ABCDE and F and end up with the same
ciphertext. However, encrypting ABC and DABC will result in different ciphertexts. All five of
the modes will return CRYPT OK on success from the encrypt or decrypt functions.
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In the ECB and CBC cases, len must be a multiple of the ciphers block size. In the CBC case,
you must manually pad the end of your message (either with zeroes or with whatever your protocol
requires).

To decrypt in either mode, perform the setup like before (recall you have to fetch the IV value
you used), and use the decrypt routine on all of the blocks.

3.4.6 IV Manipulation

To change or read the IV of a previously initialized chaining mode use the following two functions.

int XXX_getiv(unsigned char *IV,

unsigned long *len,

symmetric_XXX *XXX);

int XXX_setiv(const unsigned char *IV,

unsigned long len,

symmetric_XXX *XXX);

The XXX getiv() functions will read the IV out of the chaining mode and store it into IV along
with the length of the IV stored in len. The XXX setiv will initialize the chaining mode state as if
the original IV were the new IV specified. The length of the IV passed in must be the size of the
ciphers block size.

The XXX setiv() functions are handy if you wish to change the IV without re–keying the cipher.
What the setiv function will do depends on the mode being changed. In CBC mode, the new IV

replaces the existing IV as if it were the last ciphertext block. In CFB mode, the IV is encrypted
as if it were the prior encrypted pad. In CTR mode, the IV is encrypted without first incrementing
it (regardless of the LTC RFC 3686 flag presence). In F8 mode, the IV is encrypted and becomes
the new pad. It does not change the salted IV, and is only meant to allow seeking within a session.
In LRW, it changes the tweak, forcing a computation of the tweak pad, allowing for seeking within
the session. In OFB mode, the IV is encrypted and becomes the new pad.

3.4.7 Stream Termination

To terminate an open stream call the done function.

int XXX_done(symmetric_XXX *XXX);

This will terminate the stream (by terminating the cipher) and return CRYPT OK if success-
ful.
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3.4.8 Examples

#include <tomcrypt.h>

int main(void)

{

unsigned char key[16], IV[16], buffer[512];

symmetric_CTR ctr;

int x, err;

/* register twofish first */

if (register_cipher(&twofish_desc) == -1) {

printf("Error registering cipher.\n");

return -1;

}

/* somehow fill out key and IV */

/* start up CTR mode */

if ((err = ctr_start(

find_cipher("twofish"), /* index of desired cipher */

IV, /* the initialization vector */

key, /* the secret key */

16, /* length of secret key (16 bytes) */

0, /* 0 == default # of rounds */

CTR_COUNTER_LITTLE_ENDIAN, /* Little endian counter */

&ctr) /* where to store the CTR state */

) != CRYPT_OK) {

printf("ctr_start error: %s\n", error_to_string(err));

return -1;

}

/* somehow fill buffer than encrypt it */

if ((err = ctr_encrypt( buffer, /* plaintext */

buffer, /* ciphertext */

sizeof(buffer), /* length of plaintext pt */

&ctr) /* CTR state */

) != CRYPT_OK) {

printf("ctr_encrypt error: %s\n", error_to_string(err));

return -1;

}

/* make use of ciphertext... */

/* now we want to decrypt so let’s use ctr_setiv */

if ((err = ctr_setiv( IV, /* the initial IV we gave to ctr_start */

16, /* the IV is 16 bytes long */

&ctr) /* the ctr state we wish to modify */

) != CRYPT_OK) {

printf("ctr_setiv error: %s\n", error_to_string(err));

return -1;

}
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if ((err = ctr_decrypt( buffer, /* ciphertext */

buffer, /* plaintext */

sizeof(buffer), /* length of plaintext */

&ctr) /* CTR state */

) != CRYPT_OK) {

printf("ctr_decrypt error: %s\n", error_to_string(err));

return -1;

}

/* terminate the stream */

if ((err = ctr_done(&ctr)) != CRYPT_OK) {

printf("ctr_done error: %s\n", error_to_string(err));

return -1;

}

/* clear up and return */

zeromem(key, sizeof(key));

zeromem(&ctr, sizeof(ctr));

return 0;

}

3.4.9 LRW Mode

LRW mode is a cipher mode which is meant for indexed encryption like used to handle storage
media. It is meant to have efficient seeking and overcome the security problems of ECB mode while
not increasing the storage requirements. It is used much like any other chaining mode except with
two key differences.

The key is specified as two strings the first key K1 is the (normally AES) key and can be any
length (typically 16, 24 or 32 octets long). The second key K2 is the tweak key and is always 16
octets long. The tweak value is NOT a nonce or IV value it must be random and secret.

To initialize LRW mode use:

int lrw_start( int cipher,

const unsigned char *IV,

const unsigned char *key,

int keylen,

const unsigned char *tweak,

int num_rounds,

symmetric_LRW *lrw);

This will initialize the LRW context with the given (16 octet) IV, cipher K1 key of length
keylen octets and the (16 octet) K2 tweak. While LRW was specified to be used only with AES,
LibTomCrypt will allow any 128–bit block cipher to be specified as indexed by cipher. The number
of rounds for the block cipher num rounds can be 0 to use the default number of rounds for the
given cipher.

To process data use the following functions:



3.4 Symmetric Modes of Operations 25

int lrw_encrypt(const unsigned char *pt,

unsigned char *ct,

unsigned long len,

symmetric_LRW *lrw);

int lrw_decrypt(const unsigned char *ct,

unsigned char *pt,

unsigned long len,

symmetric_LRW *lrw);

These will encrypt (or decrypt) the plaintext to the ciphertext buffer (or vice versa). The length
is specified by len in octets but must be a multiple of 16. The LRW code uses a fast tweak update
such that consecutive blocks are encrypted faster than if random seeking where used.

To manipulate the IV use the following functions:

int lrw_getiv(unsigned char *IV,

unsigned long *len,

symmetric_LRW *lrw);

int lrw_setiv(const unsigned char *IV,

unsigned long len,

symmetric_LRW *lrw);

These will get or set the 16–octet IV. Note that setting the IV is the same as seeking and unlike
other modes is not a free operation. It requires updating the entire tweak which is slower than
sequential use. Avoid seeking excessively in performance constrained code.

To terminate the LRW state use the following:

int lrw_done(symmetric_LRW *lrw);

3.4.10 XTS Mode

As of v1.17, LibTomCrypt supports XTS mode with code donated by Elliptic Semiconductor Inc.6.
XTS is a chaining mode for 128–bit block ciphers, recommended by IEEE (P1619) for disk en-
cryption. It is meant to be an encryption mode with random access to the message data without
compromising privacy. It requires two private keys (of equal length) to perform the encryption
process. Each encryption invocation includes a sector number or unique identifier specified as a
128–bit string.

To initialize XTS mode use the following function call:

int xts_start( int cipher,

const unsigned char *key1,

const unsigned char *key2,

unsigned long keylen,

int num_rounds,

symmetric_xts *xts)

6www.ellipticsemi.com
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This will start the XTS mode with the two keys pointed to by key1 and key2 of length keylen octets
each.

To encrypt or decrypt a sector use the following calls:

int xts_encrypt(

const unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

const unsigned char *tweak,

symmetric_xts *xts);

int xts_decrypt(

const unsigned char *ct, unsigned long ptlen,

unsigned char *pt,

const unsigned char *tweak,

symmetric_xts *xts);

The first will encrypt the plaintext pointed to by pt of length ptlen octets, and store the ciphertext
in the array pointed to by ct. It uses the 128–bit tweak pointed to by tweak to encrypt the block.
The decrypt function performs the opposite operation. Both functions support ciphertext stealing
(blocks that are not multiples of 16 bytes).

The P1619 specification states the tweak for sector number shall be represented as a 128–bit
little endian string.

To terminate the XTS state call the following function:

void xts_done(symmetric_xts *xts);

3.4.11 F8 Mode

The F8 Chaining mode (see RFC 3711 for instance) is yet another chaining mode for block ciphers.
It behaves much like CTR mode in that it XORs a keystream against the plaintext to encrypt. F8
mode comes with the additional twist that the counter value is secret, encrypted by a salt key. We
initialize F8 mode with the following function call:

int f8_start( int cipher,

const unsigned char *IV,

const unsigned char *key,

int keylen,

const unsigned char *salt_key,

int skeylen,

int num_rounds,

symmetric_F8 *f8);

This will start the F8 mode state using key as the secret key, IV as the counter. It uses the salt key
as IV encryption key (m in the RFC 3711). The salt key can be shorter than the secret key but it
should not be longer.

To encrypt or decrypt data we use the following two functions:
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int f8_encrypt(const unsigned char *pt,

unsigned char *ct,

unsigned long len,

symmetric_F8 *f8);

int f8_decrypt(const unsigned char *ct,

unsigned char *pt,

unsigned long len,

symmetric_F8 *f8);

These will encrypt or decrypt a variable length array of bytes using the F8 mode state specified.
The length is specified in bytes and does not have to be a multiple of the ciphers block size.

To change or retrieve the current counter IV value use the following functions:

int f8_getiv(unsigned char *IV,

unsigned long *len,

symmetric_F8 *f8);

int f8_setiv(const unsigned char *IV,

unsigned long len,

symmetric_F8 *f8);

These work with the current IV value only and not the encrypted IV value specified during the call
to f8 start(). The purpose of these two functions is to be able to seek within a current session only.
If you want to change the session IV you will have to call f8 done() and then start a new state with
f8 start().

To terminate an F8 state call the following function:

int f8_done(symmetric_F8 *f8);
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Chapter 4

Stream Ciphers

Stream ciphers are symmetric key ciphers which operate on a stream of bytes (in theory on a stream
of bits however LibTomCrypt’s implementation works with bytes).

The API for all stream ciphers operates in mode: setup – crypt – crypt – ... – done. Please
note that both encryption and decryption are implemented via crypt.

Another useful feature of the stream ciphers API is generation of a random stream of bytes
which works like: setup – keystream – keystream – ... – done. The random stream generation is
implemented like encryption of a stream of 0x00 bytes.

Note: You shouldn’t use the keystream interface as a PRNG, as it doesn’t allow to re-seed the
internal state.

4.1 ChaCha

ChaCha is currently the most modern stream cipher included in LibTomCrypt, so use this one
unless you have a reason for using some of the older algorithms.

For more information about ChaCha see https://en.wikipedia.org/wiki/ChaCha_(cipher).
Supported key size: 16 or 32 bytes (128 or 256 bits).
You can initialize ChaCha with 96bit nonce + 32bit counter :

chacha_state st;

err = chacha_setup(&st, key, key_len, rounds);

err = chacha_ivctr32(&st, nonce, 12, initial_32bit_ctr);

Or with 64bit nonce + 64bit counter :

chacha_state st;

err = chacha_setup(&st, key, key_len, rounds);

err = chacha_ivctr64(&st, nonce, 8, initial_64bit_ctr);

The chacha setup takes the number of rounds as a parameter – choose 20 if you are not sure.
As always never ever use the same key + nonce pair more than once.

For the actual encryption or decryption you have to call:

err = chacha_crypt(&st, in_buffer, in_len, out_buffer);
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If you just want a random stream of bytes initialize the cipher with a truly random key (32
bytes), a truly random nonce (8 bytes) and zero initial counter. After that you can get a stream of
pseudo–random bytes via:

err = chacha_keystream(&st, out_buffer, out_len);

At the end you have to terminate the state:

err = chacha_done(&st);

4.2 Salsa20 and XSalsa20

Salsa20 was Daniel Bernstein’s submission to the EU eSTREAM competition where a reduced-
round version, Salsa20/12, was named one of the winners. A third version, Salsa20/8, was also
evaluated.

While 20 rounds is the conservative default number of rounds, eSTREAM deemed 12 rounds
to be a decent balance between strength and better performance. The 8-round version, while still
secure as of this writing, is faster but does not enjoy the same margin of safety. Regardless of the
number of rounds, Salsa20 accepts either a 128- or a 256-bit key, a 64-bit IV, and a 64-bit counter.

XSalsa20 is yet another variant of Salsa20 designed to accept only a 256-bit key and a longer
192-bit nonce, initialization being the only difference between XSalsa20 and Salsa20. Even the
salsa20 state is the same. Thereafter, salsa20 crypt(), salsa20 keystream(), and salsa20 done() are
used unaltered. salsa20 ivctr64() is NOT used with xsalsa20 setup().

To initialize Salsa20 for 8, 12, or 20 rounds with a 128- or a 256-bit key (16 or 32 bytes), a
64-bit IV (8 bytes), and counter (typically zero), use:

salsa20_state st;

ulong64 counter = 0;

err = salsa20_setup(&st, key, key_len, rounds);

err = salsa20_ivctr64(&st, nonce, 8, counter);

To initialize XSalsa20 for the recommended 20 rounds with a 256-bit key (32 bytes) and a
192-bit nonce (24 bytes), use:

salsa20_state st;

err = xsalsa20_setup(&st, key, key_len, nonce, nonce_len, rounds);

Both Salsa20 and XSalsa20 use the following functions. To encrypt or decrypt call:

err = salsa20_crypt(&st, in_buffer, in_len, out_buffer);

For a random keystream initialize the cipher with a truly random key and random nonce after
which you can get a stream of pseudo–random bytes via:

err = salsa20_keystream(&st, out_buffer, out_len);

Finally, when finished you should wipe the state.
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err = salsa20_done(&st);

For both Salsa20 and XSalsa20 rounds must be an even number and if set to 0 the default
number of rounds, 20, will be used.

If you define LTC XSALSA20 to include XSalsa20 in a minimal libtomcrypt library build, you
must also define LTC SALSA20.

As always, never ever use the same key + nonce/IV pair more than once.

For more information about Salsa20 see https://en.wikipedia.org/wiki/Salsa20.

For more information about XSalsa20 see https://cr.yp.to/snuffle/xsalsa-20081128.pdf.

4.3 Sosemanuk

Sosemanuk, along with Salsa20, HC-128, and Rabbit, was named one of the winners in the EU
eSTREAM competition. Sosemanuk is a stream cipher that borrows heavily from SNOW, another
stream cipher, and the block cipher Serpent. (Sosemanuk means ”snow snake” in the Cree Indian
language.)

Sosemanuk will accept a key between 1 and 256 bits, but Sosemanuk’s security level of 128
bits is achieved only if the key is between 128 and 256 bits. Keys longer than 128 bits are not
guaranteed to provided higher security. The initialization vector is 128 bits. (All length arguments
are expressed in bytes.)

See http://www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3.pdf for more
information.

Initialize by creating a Sosemanuk state and provide a 128- to 256-bit key to sosemanuk setup().

sosemanuk_state ss;

err = sosemanuk_setup(&ss, key, keylen);

Finish initializing with an iv of up to 128 bits.

err = sosemanuk_setiv(&ss, iv, ivlen);

For the actual encryption or decryption, call:

err = sosemanuk_crypt(&ss, in, inlen, out);

If you just want a random stream of bytes initialize the cipher with a truly random key (256
bits) and a truly random iv (128 bits). After that you can get a stream of pseudo–random bytes
via:

err = sosemanuk_keystream(&ss, out, outlen);

When finished you should wipe the key by running sosemanuk done().

err = sosemanuk_done(&ss);

To do multiple encryptions and decryptions with the same key, you will want to set the iv but
you do not need to re-run sosemanuk setup() again, unless of course, you called sosemanuk done().

https://en.wikipedia.org/wiki/Salsa20
https://cr.yp.to/snuffle/xsalsa-20081128.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3.pdf
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4.4 Rabbit

Rabbit, along with Salsa20, Sosemanuk, and HC-128, was named one of the winners in the EU
eSTREAM competition. Rabbit is a simple and fast cipher suitable for resource constrained plat-
forms.

This implementation of Rabbit will accept a key of up to 16 bytes (128 bits), and an initialization
vector of up to 8 bytes (64 bits). If the provided key or IV is shorter, they will be null padded to
that length. There is no rounds option.

The calls to rabbit crypt() or rabbit keystream() may be for any number bytes although their
generation will be more efficient if the requests are for multiples of 16 bytes.

You begin initializing Rabbit by creating a state and calling rabbit setup() with a 128-bit key.

rabbit_state st;

err = rabbit_setup(&st, key, keylen);

Set the IV using rabbit setiv() with a 64-bit IV.

err = rabbit_setiv(&st, iv, iv_len);

For the actual encryption or decryption, call:

err = rabbit_crypt(&st, in_buffer, inlen, out_buffer);

If you just want a random stream of bytes initialize the cipher with a truly random key (16
bytes), a truly random iv (8 bytes). After that you can get a stream of pseudo–random bytes via:

err = rabbit_keystream(&st, out_buffer, length);

When finished you should wipe the key and the state:

err = rabbit_done(&st);

Technically, it is possible to initialize Rabbit with only a call to rabbit setup(), skipping the call
to rabbit setiv(). This is not recommended for interoperability reasons, but there may be special
cases like closed systems or custom protocols where doing so might be appropriate. Please note that
skipping rabbit setiv() will give results different than calling rabbit setiv() passing a zero-valued IV.
You should call rabbit setiv() unless you have a special reason for not doing so.

To do multiple encryptions and decryptions with the same key, you can reset the algorithm
using rabbit setiv() if you saved the state and did not wipe it with rabbit done(). You will want
to use a different IV but you do not need to call rabbit setup() a 2nd time, unless of course, you
skipped calling rabbit setiv().

For more information, see:
- http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf
- https://tools.ietf.org/html/rfc4503

4.5 RC4

For more information about RC4 see https://en.wikipedia.org/wiki/RC4.
Supported key size: 5–256 bytes
You need to initialize RC4 only with a key.

http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf
https://tools.ietf.org/html/rfc4503
https://en.wikipedia.org/wiki/RC4
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rc4_state st;

err = rc4_stream_setup(&st, key, key_len);

For the actual encryption or decryption you have to call:

err = rc4_stream_crypt(&st, in_buffer, in_len, out_buffer);

If you just want a random stream of bytes initialize the cipher with truly random key. After
that you can get a stream of pseudo–random bytes via:

err = rc4_stream_keystream(&st, out_buffer, out_len);

At the end you have to terminate the state:

err = rc4_stream_done(&st);

4.6 Sober128

Supported key size: must be multiple of 4 bytes
You need to initialize Sober128 with a key and a nonce (must be multiple of 4 bytes).

sober128_state st;

err = sober128_stream_setup(&st, key, 16);

err = sober128_stream_setiv(&st, nonce, 12);

For the actual encryption or decryption you to call:

err = sober128_stream_crypt(&st, in_buffer, in_len, out_buffer);

If you just want a random stream of bytes initialize the cipher with a truly random key and a
truly random nonce. After that you can get a stream of pseudo–random bytes via:

err = sober128_stream_keystream(&st, out_buffer, out_len);

At the end you have to terminate the state:

err = sober128_stream_done(&st);
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Chapter 5

Authenticated Encryption

Authenticated Encryption - sometimes also called Authenticated Encryption with Associated Data
(AEAD) - is a variant of encryption that provides not only confidentiality (as other symmetric or
stream ciphers) but also integrity.

The inputs of Authenticated Encryption are: key, nonce (sometimes called initialization vector),
plaintext, optional header (sometimes called additional authenticated data - AAD). The outputs
are: ciphertext and tag.

5.1 EAX Mode

LibTomCrypt provides support for a mode called EAX1 in a manner similar to the way it was
intended to be used by the designers. First, a short description of what EAX mode is before we
explain how to use it. EAX is a mode that requires a cipher, CTR and OMAC support and provides
encryption and authentication2. It is initialized with a random nonce that can be shared publicly,
a header which can be fixed and public, and a random secret symmetric key.

The header data is meant to be meta–data associated with a stream that isn’t private (e.g.,
protocol messages). It can be added at anytime during an EAX stream, and is part of the au-
thentication tag. That is, changes in the meta-data can be detected by changes in the output
tag.

The mode can then process plaintext producing ciphertext as well as compute a partial checksum.
The actual checksum called a tag is only emitted when the message is finished. In the interim, the
user can process any arbitrary sized message block to send to the recipient as ciphertext. This
makes the EAX mode especially suited for streaming modes of operation.

The mode is initialized with the following function.

int eax_init( eax_state *eax,

int cipher,

const unsigned char *key,

unsigned long keylen,

const unsigned char *nonce,

1See M. Bellare, P. Rogaway, D. Wagner, A Conventional Authenticated-Encryption Mode.
2Note that since EAX only requires OMAC and CTR you may use encrypt only cipher descriptors with this mode.
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unsigned long noncelen,

const unsigned char *header,

unsigned long headerlen);

Where eax is the EAX state. The cipher parameter is the index of the desired cipher in the
descriptor table. The key parameter is the shared secret symmetric key of length keylen octets.
The nonce parameter is the random public string of length noncelen octets. The header parameter
is the random (or fixed or NULL) header for the message of length headerlen octets.

When this function completes, the eax state will be initialized such that you can now either
have data decrypted or encrypted in EAX mode. Note: if headerlen is zero you may pass header
as NULL to indicate there is no initial header data.

To encrypt or decrypt data in a streaming mode use the following.

int eax_encrypt( eax_state *eax,

const unsigned char *pt,

unsigned char *ct,

unsigned long length);

int eax_decrypt( eax_state *eax,

const unsigned char *ct,

unsigned char *pt,

unsigned long length);

The function eax encrypt will encrypt the bytes in pt of length octets, and store the ciphertext in
ct. Note: ct and pt may be the same region in memory. This function will also send the ciphertext
through the OMAC function. The function eax decrypt decrypts ct, and stores it in pt. This also
allows pt and ct to be the same region in memory.

You cannot both encrypt or decrypt with the same eax context. For bi–directional communica-
tion you will need to initialize two EAX contexts (preferably with different headers and nonces).

Note: both of these functions allow you to send the data in any granularity but the order is
important. While the eax init() function allows you to add initial header data to the stream you
can also add header data during the EAX stream with the following.

int eax_addheader( eax_state *eax,

const unsigned char *header,

unsigned long length);

This will add the length octet from header to the given eax header. Once the message is finished,
the tag (checksum) may be computed with the following function:

int eax_done( eax_state *eax,

unsigned char *tag,

unsigned long *taglen);

This will terminate the EAX state eax, and store up to taglen bytes of the message tag in tag. The
function then stores how many bytes of the tag were written out back in to taglen.

The EAX mode code can be tested to ensure it matches the test vectors by calling the following
function:
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int eax_test(void);

This requires that the AES (or Rijndael) block cipher be registered with the cipher descriptor table
first.

#include <tomcrypt.h>

int main(void)

{

int err;

eax_state eax;

unsigned char pt[64], ct[64], nonce[16], key[16], tag[16];

unsigned long taglen;

if (register_cipher(&rijndael_desc) == -1) {

printf("Error registering Rijndael");

return EXIT_FAILURE;

}

/* ... make up random nonce and key ... */

/* initialize context */

if ((err = eax_init( &eax, /* context */

find_cipher("rijndael"), /* cipher id */

nonce, /* the nonce */

16, /* nonce is 16 bytes */

"TestApp", /* example header */

7) /* header length */

) != CRYPT_OK) {

printf("Error eax_init: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now encrypt data, say in a loop or whatever */

if ((err = eax_encrypt( &eax, /* eax context */

pt, /* plaintext (source) */

ct, /* ciphertext (destination) */

sizeof(pt) /* size of plaintext */

) != CRYPT_OK) {

printf("Error eax_encrypt: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* finish message and get authentication tag */

taglen = sizeof(tag);

if ((err = eax_done( &eax, /* eax context */

tag, /* where to put tag */

&taglen /* length of tag space */
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) != CRYPT_OK) {

printf("Error eax_done: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now we have the authentication tag in "tag" and

* it’s taglen bytes long */

}

You can also perform an entire EAX state on a block of memory in a single function call with
the following functions.

int eax_encrypt_authenticate_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

const unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen);

int eax_decrypt_verify_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

const unsigned char *ct, unsigned long ctlen,

unsigned char *pt,

unsigned char *tag, unsigned long taglen,

int *res);

Both essentially just call eax init() followed by eax encrypt() (or eax decrypt() respectively)
and eax done(). The parameters have the same meaning as with those respective functions.

The only difference is eax decrypt verify memory() does not emit a tag. Instead you pass it a
tag as input and it compares it against the tag it computed while decrypting the message. If the
tags match then it stores a 1 in res, otherwise it stores a 0.

5.2 OCB Modes

5.2.1 Preface

LibTomCrypt provides support for a mode called OCB in version 1 ”OCB”3 and version 3 ”OCB3”4.
OCB is an encryption protocol that simultaneously provides authentication. It is slightly faster to
use than EAX mode but is less flexible.

3See P. Rogaway, M. Bellare, J. Black, T. Krovetz, OCB: A Block Cipher Mode of Operation for Efficient
Authenticated Encryption.

4See RFC7253, T. Krovetz, P. Rogaway, The OCB Authenticated-Encryption Algorithm.
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Please be aware that all versions of OCB are patented and there are several licensing models
provided by P. Rogaway, the patent holder – see http://web.cs.ucdavis.edu/~rogaway/ocb/

license.htm.

5.2.2 OCB

Initialization and processing

Let’s review how to initialize an OCB context.

int ocb_init( ocb_state *ocb,

int cipher,

const unsigned char *key,

unsigned long keylen,

const unsigned char *nonce);

This will initialize the ocb context using cipher descriptor cipher. It will use a key of length
keylen and the random nonce. Note that nonce must be a random (public) string the same length
as the block ciphers block size (e.g. 16 bytes for AES).

This mode has no Associated Data like EAX mode does which means you cannot authenticate
metadata along with the stream. To encrypt or decrypt data use the following.

int ocb_encrypt( ocb_state *ocb,

const unsigned char *pt,

unsigned char *ct);

int ocb_decrypt( ocb_state *ocb,

const unsigned char *ct,

unsigned char *pt);

This will encrypt (or decrypt for the latter) a fixed length of data from pt to ct (vice versa for
the latter). They assume that pt and ct are the same size as the block cipher’s block size. Note
that you cannot call both functions given a single ocb state. For bi-directional communication you
will have to initialize two ocb states (with different nonces). Also pt and ct may point to the same
location in memory.

State Termination

When you are finished encrypting the message you call the following function to compute the tag.

int ocb_done_encrypt( ocb_state *ocb,

const unsigned char *pt,

unsigned long ptlen,

unsigned char *ct,

unsigned char *tag,

unsigned long *taglen);

http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm
http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm
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This will terminate an encrypt stream ocb. If you have trailing bytes of plaintext that will not
complete a block you can pass them here. This will also encrypt the ptlen bytes in pt and store
them in ct. It will also store up to taglen bytes of the tag into tag.

Note that ptlen must be less than or equal to the block size of block cipher chosen. Also note
that if you have an input message equal to the length of the block size then you pass the data here
(not to ocb encrypt()) only.

To terminate a decrypt stream and compared the tag you call the following.

int ocb_done_decrypt( ocb_state *ocb,

const unsigned char *ct,

unsigned long ctlen,

unsigned char *pt,

const unsigned char *tag,

unsigned long taglen,

int *res);

Similarly to the previous function you can pass trailing message bytes into this function. This will
compute the tag of the message (internally) and then compare it against the taglen bytes of tag
provided. By default res is set to zero. If all taglen bytes of tag can be verified then res is set to
one (authenticated message).

Packet Functions

To make life simpler the following two functions are provided for memory bound OCB.

int ocb_encrypt_authenticate_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce,

const unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen);

This will OCB encrypt the message pt of length ptlen, and store the ciphertext in ct. The length
ptlen can be any arbitrary length.

int ocb_decrypt_verify_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce,

const unsigned char *ct, unsigned long ctlen,

unsigned char *pt,

const unsigned char *tag, unsigned long taglen,

int *res);

Similarly, this will OCB decrypt, and compare the internally computed tag against the tag
provided. res is set appropriately to 1 if the tag matches or to 0 if it doesn’t match.
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5.2.3 OCB3

Initialization and processing

int ocb3_init(ocb3_state *ocb, int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

unsigned long taglen);

This will initialize the ocb context using cipher descriptor cipher. It will use a key of length
keylen and the random nonce of length noncelen. The nonce must be a random (public) string of
an arbitrary length between 1 and 15 octets. The desired length of the TAG that should be created
when terminating the state has to be passed in taglen and has to be between 0 and 16 octets.

Note that you can only use ciphers with a block length of 16.

Additional Authenticated Data

OCB3 has, in contrary to OCB, the possibility to add ”Additional Authenticated Data” (AAD)
when performing cryptographic operations.

int ocb3_add_aad(ocb3_state *ocb, const unsigned char *aad, unsigned long aadlen);

This will add the AAD at aad of the arbitrary length aadlen to be authenticated within the
context ocb.

int ocb3_encrypt( ocb3_state *ocb,

const unsigned char *pt,

unsigned long ptlen,

unsigned char *ct);

int ocb3_decrypt( ocb3_state *ocb,

const unsigned char *ct,

unsigned long ctlen,

unsigned char *pt);

This will encrypt (or decrypt for the latter) a fixed length of data from pt to ct (vice versa for
the latter). They assume that pt and ct are the same size as the block cipher’s block size. Note
that you cannot call both functions given a single ocb state. For bi-directional communication you
will have to initialize two ocb states (with different nonces). Also pt and ct may point to the same
location in memory.

State Termination

int ocb3_encrypt_last( ocb3_state *ocb,

const unsigned char *pt,

unsigned long ptlen,

unsigned char *ct);

int ocb3_decrypt_last( ocb3_state *ocb,
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const unsigned char *ct,

unsigned long ctlen,

unsigned char *pt);

This has to be called for the last encrypt (or decrypt) operation. Note that if you have to
invoke only a single operation you can directly use these functions instead of ocb3 encrypt() or
ocb3 decrypt().

When you are finished encrypting the message you call the following function to compute the
tag.

int ocb3_done(ocb3_state *ocb, unsigned char *tag, unsigned long *taglen);

This stores the tag of the ocb state in tag. The taglen parameter defines on input the length of
the tag to output and will be set to the actual length written, which is at most 16 octets.

Packet Functions

To make life simpler the following two functions are provided for memory bound OCB3.

int ocb3_encrypt_authenticate_memory(int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *adata, unsigned long adatalen,

const unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen);

This will OCB3 encrypt the message pt of length ptlen, and store the ciphertext in ct. The length
ptlen can be any arbitrary length. The additional authenticated data adata of length adatalen is
optional and can be left out by passing NULL as adata. The length of the authentication TAG will
be stored in tag, which is also optional. The length of the TAG passed in taglen has to be between
0 and 16.

int ocb3_decrypt_verify_memory(int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *adata, unsigned long adatalen,

const unsigned char *ct, unsigned long ctlen,

unsigned char *pt,

const unsigned char *tag, unsigned long taglen,

int *stat);

Similarly, this will OCB3 decrypt, and compare the internally computed tag against the tag
provided. res is set appropriately to 1 if the tag matches or to 0 if it doesn’t match.

5.3 CCM Mode

CCM is a NIST proposal for encrypt + authenticate that is centered around using AES (or any
16–byte cipher) as a primitive.
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5.3.1 Initialization

To initialize the CCM context with a secret key call the following function.

int ccm_init( ccm_state *ccm,

int cipher,

const unsigned char *key,

int keylen,

int ptlen,

int taglen,

int aadlen);

This initializes the CCM state ccm for the given cipher indexed by cipher, with a secret key key of
length keylen octets. The cipher chosen must have a 16–byte block size (e.g., AES). Unlike EAX
and OCB mode, CCM is only meant for packet mode where the length of the input is known in
advance. This is why the length of the stream to authenticate is given as ptlen. With CCM, a
header is meta–data you want to send with the message but not have encrypted. The header len is
given in the init as aadlen.

5.3.2 Nonce Vector

After the state has been initialized (or reset) the next step is to add the session (or packet) initial-
ization vector. It should be unique per packet encrypted.

int ccm_add_nonce( ccm_state *ccm,

const unsigned char *nonce,

unsigned long noncelen);

This adds the nonce (a.k.a. salt) nonce of length noncelen octets to the CCM state ccm. Note
that this function must be called once and only once.

5.3.3 Additional Authentication Data

The header is meta–data you want to send with the message but not have encrypted, it must be
stored in adata of length adatalen octets.

int ccm_add_aad( ccm_state *ccm,

const unsigned char *adata,

unsigned long adatalen);

This adds the additional authentication data adata of length adatalen to the CCM state ccm.

5.3.4 Plaintext Processing

After the AAD has been processed, the plaintext (or ciphertext depending on the direction) can be
processed.
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int ccm_process(ccm_state *ccm,

unsigned char *pt,

unsigned long ptlen,

unsigned char *ct,

int direction);

This processes message data where pt is the plaintext and ct is the ciphertext. The length of both
are equal and stored in ptlen. Depending on the mode pt is the input and ct is the output (or vice
versa). When direction equals CCM ENCRYPT the plaintext is read, encrypted and stored in
the ciphertext buffer. When direction equals CCM DECRYPT the opposite occurs.

5.3.5 State Termination

To terminate a CCM state and retrieve the message authentication tag call the following function.

int ccm_done( ccm_state *ccm,

unsigned char *tag,

unsigned long *taglen);

This terminates the CCM state ccm and stores the tag in tag of length taglen octets.

5.3.6 State Reset

The call to ccm init() will perform considerable pre–computation and if you’re going to be dealing
with a lot of packets it is very costly to have to call it repeatedly. To aid in this endeavour, the
reset function is provided.

int ccm_reset(ccm_state *ccm);

This will reset the CCM state ccm to the state that ccm init() left it. The user would then call
ccm add nonce(), ccm add aad(), etc.

5.3.7 One–Shot Packet

To process a single packet under any given key the following helper function can be used.

int ccm_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

symmetric_key *uskey,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);
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This will initialize the CCM state with the given key, nonce and AAD value then proceed to
encrypt or decrypt the message text and store the final message tag. The definition of the variables
is the same as it is for all the manual functions.

If you are processing many packets under the same key you shouldn’t use this function as it
invokes the pre–computation with each call.

5.3.8 Example Usage

The following is an example usage of how to use CCM over multiple packets with a shared secret
key.

#include <tomcrypt.h>

int send_packet(const unsigned char *pt, unsigned long ptlen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *aad, unsigned long aadlen,

ccm_state *ccm)

{

int err;

unsigned long taglen;

unsigned char tag[16];

/* reset the state */

if ((err = ccm_reset(ccm)) != CRYPT_OK) {

return err;

}

/* Add the nonce */

if ((err = ccm_add_nonce(ccm, nonce, noncelen)) != CRYPT_OK) {

return err;

}

/* Add the AAD (note: aad can be NULL if aadlen == 0) */

if ((err = ccm_add_aad(ccm, aad, aadlen)) != CRYPT_OK) {

return err;

}

/* process the plaintext */

if ((err =

ccm_process(ccm, pt, ptlen, pt, CCM_ENCRYPT)) != CRYPT_OK) {

return err;

}

/* Finish up and get the MAC tag */

taglen = sizeof(tag);

if ((err = ccm_done(ccm, tag, &taglen)) != CRYPT_OK) {

return err;

}

/* ... send a header describing the lengths ... */
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/* depending on the protocol and how nonce is

* generated you may have to send it too... */

send(socket, nonce, noncelen, 0);

/* send the aad */

send(socket, aad, aadlen, 0);

/* send the ciphertext */

send(socket, pt, ptlen, 0);

/* send the tag */

send(socket, tag, taglen, 0);

return CRYPT_OK;

}

int main(void)

{

ccm_state ccm;

unsigned char key[16], NONCE[12], pt[PACKET_SIZE];

int err, x;

unsigned long ptlen;

/* somehow fill key/NONCE with random values */

/* register AES */

register_cipher(&aes_desc);

/* init the CCM state */

if ((err =

ccm_init(&ccm, find_cipher("aes"), key, 16, PACKET_SIZE, 16, size(NONCE))) != CRYPT_OK) {

whine_and_pout(err);

}

/* handle us some packets */

for (;;) {

ptlen = make_packet_we_want_to_send(pt);

/* use NONCE as counter (12 byte counter) */

for (x = 11; x >= 0; x--) {

if (++NONCE[x]) {

break;

}

}

if ((err = send_packet(pt, ptlen, NONCE, 12, NULL, 0, &ccm))

!= CRYPT_OK) {

whine_and_pout(err);

}
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}

return EXIT_SUCCESS;

}

5.4 GCM Mode

Galois counter mode is an IEEE proposal for authenticated encryption (also it is a planned NIST
standard). Like EAX and OCB mode, it can be used in a streaming capacity however, unlike EAX
it cannot accept additional authentication data (meta–data) after plaintext has been processed.
This mode also only works with block ciphers with a 16–byte block.

A GCM stream is meant to be processed in three modes, one after another. First, the initial-
ization vector (per session) data is processed. This should be unique to every session. Next, the
the optional additional authentication data is processed, and finally the plaintext (or ciphertext
depending on the direction).

5.4.1 Initialization

To initialize the GCM context with a secret key call the following function.

int gcm_init( gcm_state *gcm,

int cipher,

const unsigned char *key,

int keylen);

This initializes the GCM state gcm for the given cipher indexed by cipher, with a secret key key of
length keylen octets. The cipher chosen must have a 16–byte block size (e.g., AES).

5.4.2 Initialization Vector

After the state has been initialized (or reset) the next step is to add the session (or packet) initial-
ization vector. It should be unique per packet encrypted.

int gcm_add_iv( gcm_state *gcm,

const unsigned char *IV,

unsigned long IVlen);

This adds the initialization vector octets from IV of length IVlen to the GCM state gcm. You can
call this function as many times as required to process the entire IV.

Note: the GCM protocols provides a shortcut for 12–byte IVs where no pre-processing is to be
done. If you want to minimize per packet latency it is ideal to only use 12–byte IVs. You can just
increment it like a counter for each packet.

5.4.3 Additional Authentication Data

After the entire IV has been processed, the additional authentication data can be processed. Unlike
the IV, a packet/session does not require additional authentication data (AAD) for security. The
AAD is meant to be used as side–channel data you want to be authenticated with the packet. Note:
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once you begin adding AAD to the GCM state you cannot return to adding IV data until the state
has been reset.

int gcm_add_aad( gcm_state *gcm,

const unsigned char *adata,

unsigned long adatalen);

This adds the additional authentication data adata of length adatalen to the GCM state gcm.

5.4.4 Plaintext Processing

After the AAD has been processed, the plaintext (or ciphertext depending on the direction) can be
processed.

int gcm_process( gcm_state *gcm,

unsigned char *pt,

unsigned long ptlen,

unsigned char *ct,

int direction);

This processes message data where pt is the plaintext and ct is the ciphertext. The length of both
are equal and stored in ptlen. Depending on the mode pt is the input and ct is the output (or vice
versa). When direction equals GCM ENCRYPT the plaintext is read, encrypted and stored in
the ciphertext buffer. When direction equals GCM DECRYPT the opposite occurs.

5.4.5 State Termination

To terminate a GCM state and retrieve the message authentication tag call the following function.

int gcm_done( gcm_state *gcm,

unsigned char *tag,

unsigned long *taglen);

This terminates the GCM state gcm and stores the tag in tag of length taglen octets.

5.4.6 State Reset

The call to gcm init() will perform considerable pre–computation (when GCM TABLES is de-
fined) and if you’re going to be dealing with a lot of packets it is very costly to have to call it
repeatedly. To aid in this endeavour, the reset function has been provided.

int gcm_reset(gcm_state *gcm);

This will reset the GCM state gcm to the state that gcm init() left it. The user would then call
gcm add iv(), gcm add aad(), etc.
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5.4.7 One–Shot Packet

To process a single packet under any given key the following helper function can be used.

int gcm_memory(

int cipher,

const unsigned char *key,

unsigned long keylen,

const unsigned char *IV, unsigned long IVlen,

const unsigned char *adata, unsigned long adatalen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

This will initialize the GCM state with the given key, IV and AAD value then proceed to encrypt
or decrypt the message text and store the final message tag. The definition of the variables is the
same as it is for all the manual functions.

If you are processing many packets under the same key you shouldn’t use this function as it
invokes the pre–computation with each call.

5.4.8 Example Usage

The following is an example usage of how to use GCM over multiple packets with a shared secret
key.

#include <tomcrypt.h>

int send_packet(const unsigned char *pt, unsigned long ptlen,

const unsigned char *iv, unsigned long ivlen,

const unsigned char *aad, unsigned long aadlen,

gcm_state *gcm)

{

int err;

unsigned long taglen;

unsigned char tag[16];

/* reset the state */

if ((err = gcm_reset(gcm)) != CRYPT_OK) {

return err;

}

/* Add the IV */

if ((err = gcm_add_iv(gcm, iv, ivlen)) != CRYPT_OK) {

return err;

}

/* Add the AAD (note: aad can be NULL if aadlen == 0) */

if ((err = gcm_add_aad(gcm, aad, aadlen)) != CRYPT_OK) {

return err;
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}

/* process the plaintext */

if ((err =

gcm_process(gcm, pt, ptlen, pt, GCM_ENCRYPT)) != CRYPT_OK) {

return err;

}

/* Finish up and get the MAC tag */

taglen = sizeof(tag);

if ((err = gcm_done(gcm, tag, &taglen)) != CRYPT_OK) {

return err;

}

/* ... send a header describing the lengths ... */

/* depending on the protocol and how IV is

* generated you may have to send it too... */

send(socket, iv, ivlen, 0);

/* send the aad */

send(socket, aad, aadlen, 0);

/* send the ciphertext */

send(socket, pt, ptlen, 0);

/* send the tag */

send(socket, tag, taglen, 0);

return CRYPT_OK;

}

int main(void)

{

gcm_state gcm;

unsigned char key[16], IV[12], pt[PACKET_SIZE];

int err, x;

unsigned long ptlen;

/* somehow fill key/IV with random values */

/* register AES */

register_cipher(&aes_desc);

/* init the GCM state */

if ((err =

gcm_init(&gcm, find_cipher("aes"), key, 16)) != CRYPT_OK) {

whine_and_pout(err);

}
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/* handle us some packets */

for (;;) {

ptlen = make_packet_we_want_to_send(pt);

/* use IV as counter (12 byte counter) */

for (x = 11; x >= 0; x--) {

if (++IV[x]) {

break;

}

}

if ((err = send_packet(pt, ptlen, iv, 12, NULL, 0, &gcm))

!= CRYPT_OK) {

whine_and_pout(err);

}

}

return EXIT_SUCCESS;

}

5.5 ChaCha20–Poly1305

This authenticated encryption is based on ChaCha20 stream cipher and Poly1305 authenticator. It
is defined by https://tools.ietf.org/html/rfc7539.

5.5.1 Initialization

To initialize the ChaCha20–Poly1305 context with a secret key call the following function.

int chacha20poly1305_init(chacha20poly1305_state *st,

const unsigned char *key,

unsigned long keylen);

This initializes the ChaCha20–Poly1305 state st with a secret key key of length keylen octets (valid
lengths: 32 or 16).

5.5.2 Initialization Vector

After the state has been initialized the next step is to add the initialization vector.

int chacha20poly1305_setiv(chacha20poly1305_state *st,

const unsigned char *iv,

unsigned long ivlen);

This adds the initialization vector from iv of length ivlen octects (valid lengths: 8 or 12) to the
ChaCha20–Poly1305 state st.

int chacha20poly1305_setiv_rfc7905(chacha20poly1305_state *st,

const unsigned char *iv,

unsigned long ivlen,

ulong64 sequence_number);

https://tools.ietf.org/html/rfc7539
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This also adds the initialization vector from iv of length ivlen octects (valid lengths: 8 or 12) to
the state st but it also incorporates 64bit sequence number into IV as described in RFC7905.

You can call only one of chacha20poly1305 setiv or chacha20poly1305 setiv rfc7905.

5.5.3 Additional Authentication Data

After the IV has been set, the additional authentication data can be processed.

int chacha20poly1305_add_aad(chacha20poly1305_state *st,

const unsigned char *adata,

unsigned long adatalen);

This adds the additional authentication data adata of length adatalen to the ChaCha20–Poly1305
state st.

5.5.4 Encryption / Decryption

After the AAD has been processed, the plaintext (or ciphertext depending on the direction) can be
processed.

int chacha20poly1305_encrypt(chacha20poly1305_state *st,

const unsigned char *in,

unsigned long inlen,

unsigned char *out);

This encrypts the data where in is the plaintext and out is the ciphertext. The length of both are
equal and stored in inlen.

int chacha20poly1305_decrypt(chacha20poly1305_state *st,

const unsigned char *in,

unsigned long inlen,

unsigned char *out);

This decrypts the data where in is the ciphertext and out is the plaintext. The length of both are
equal and stored in inlen.

5.5.5 State Termination

To terminate a ChaCha20–Poly1305 state and retrieve the message authentication tag call the
following function.

int chacha20poly1305_done(chacha20poly1305_state *st,

unsigned char *tag,

unsigned long *taglen);

This terminates the ChaCha20–Poly1305 state st and stores the tag in tag of length taglen octets
(always 16).
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5.5.6 One–Shot Packet

To process a single packet under any given key the following helper function can be used.

int chacha20poly1305_memory(const unsigned char *key,

unsigned long keylen,

const unsigned char *iv,

unsigned long ivlen,

const unsigned char *aad,

unsigned long aadlen,

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned char *tag,

unsigned long *taglen,

int direction);

This will initialize the ChaCha20–Poly1305 state with the given key, IV and AAD value then proceed
to encrypt (direction equals CHACHA20POLY1305 ENCRYPT) or decrypt (direction equals
CHACHA20POLY1305 DECRYPT) the message text and store the final message tag. The
definition of the variables is the same as it is for all the manual functions.
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Chapter 6

One-Way Cryptographic Hash
Functions

6.1 Core Functions

Like the ciphers, there are hash core functions and a universal data type to hold the hash state
called hash state. To initialize hash XXX (where XXX is the name) call:

void XXX_init(hash_state *md);

This simply sets up the hash to the default state governed by the specifications of the hash. To
add data to the message being hashed call:

int XXX_process( hash_state *md,

const unsigned char *in,

unsigned long inlen);

Essentially all hash messages are virtually infinitely1 long message which are buffered. In the case
where this limit is reached the XXX process() function returns CRYPT HASH OVERFLOW. The
data can be passed in any sized chunks as long as the order of the bytes are the same, the message
digest (hash output) will be the same. For example, this means that:

md5_process(&md, "hello ", 6);

md5_process(&md, "world", 5);

Will produce the same message digest as the single call:

md5_process(&md, "hello world", 11);

To finally get the message digest (the hash) call:

int XXX_done( hash_state *md,

unsigned char *out);

1Most hashes are limited to 264 bits or 2,305,843,009,213,693,952 bytes.

55
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This function will finish up the hash and store the result in the out array. You must ensure
that out is long enough for the hash in question. Often hashes are used to get keys for symmetric
ciphers so the XXX done() functions will wipe the md variable before returning automatically.

To test a hash function call:

int XXX_test(void);

This will return CRYPT OK if the hash matches the test vectors, otherwise it returns an error
code. An example snippet that hashes a message with md5 is given below.

#include <tomcrypt.h>

int main(void)

{

hash_state md;

unsigned char *in = "hello world", out[16];

/* setup the hash */

md5_init(&md);

/* add the message */

md5_process(&md, in, strlen(in));

/* get the hash in out[0..15] */

md5_done(&md, out);

return 0;

}

6.2 Hash Descriptors

Like the set of ciphers, the set of hashes have descriptors as well. They are stored in an array called
hash descriptor and are defined by:

struct _hash_descriptor {

char *name;

unsigned long hashsize; /* digest output size in bytes */

unsigned long blocksize; /* the block size the hash uses */

void (*init) (hash_state *hash);

int (*process)( hash_state *hash,

const unsigned char *in,

unsigned long inlen);

int (*done) (hash_state *hash, unsigned char *out);

int (*test) (void);

};
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The name member is the name of the hash function (all lowercase). The hashsize member is
the size of the digest output in bytes, while blocksize is the size of blocks the hash expects to the
compression function. Technically, this detail is not important for high level developers but is useful
to know for performance reasons.

The init member initializes the hash, process passes data through the hash, done terminates the
hash and retrieves the digest. The test member tests the hash against the specified test vectors.

There is a function to search the array as well called int find hash(char *name). It returns -1 if
the hash is not found, otherwise, the position in the descriptor table of the hash.

In addition, there is also find hash oid() which finds a hash by the ASN.1 OBJECT IDENTI-
FIER string.

int find_hash_oid(const unsigned long *ID, unsigned long IDlen);

You can use the table to indirectly call a hash function that is chosen at run-time. For example:

#include <tomcrypt.h>

int main(void)

{

unsigned char buffer[100], hash[MAXBLOCKSIZE];

int idx, x;

hash_state md;

/* register hashes .... */

if (register_hash(&md5_desc) == -1) {

printf("Error registering MD5.\n");

return -1;

}

/* register other hashes ... */

/* prompt for name and strip newline */

printf("Enter hash name: \n");

fgets(buffer, sizeof(buffer), stdin);

buffer[strlen(buffer) - 1] = 0;

/* get hash index */

idx = find_hash(buffer);

if (idx == -1) {

printf("Invalid hash name!\n");

return -1;

}

/* hash input until blank line */

hash_descriptor[idx].init(&md);

while (fgets(buffer, sizeof(buffer), stdin) != NULL)

hash_descriptor[idx].process(&md, buffer, strlen(buffer));

hash_descriptor[idx].done(&md, hash);

/* dump to screen */

for (x = 0; x < hash_descriptor[idx].hashsize; x++)

printf("%02x ", hash[x]);
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printf("\n");

return 0;

}

Note the usage of MAXBLOCKSIZE. In LibTomCrypt, no symmetric block, key or hash
digest is larger than MAXBLOCKSIZE in length. This provides a simple size you can set your
automatic arrays to that will not get overrun.

There are three helper functions to make working with hashes easier. The first is a function to
hash a buffer, and produce the digest in a single function call.

int hash_memory( int hash,

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

This will hash the data pointed to by in of length inlen. The hash used is indexed by the hash
parameter. The message digest is stored in out, and the outlen parameter is updated to hold the
message digest size.

The next helper function allows for the hashing of a file based on a file name.

int hash_file( int hash,

const char *fname,

unsigned char *out,

unsigned long *outlen);

This will hash the file named by fname using the hash indexed by hash. The file named in
this function call must be readable by the user owning the process performing the request. This
function can be omitted by the LTC NO FILE define, which forces it to return CRYPT NOP
when it is called. The message digest is stored in out, and the outlen parameter is updated to hold
the message digest size.

int hash_filehandle( int hash,

FILE *in,

unsigned char *out,

unsigned long *outlen);

This will hash the file identified by the handle in using the hash indexed by hash. This will
begin hashing from the current file pointer position, and will not rewind the file pointer when
finished. This function can be omitted by the LTC NO FILE define, which forces it to return
CRYPT NOP when it is called. The message digest is stored in out, and the outlen parameter is
updated to hold the message digest size.

To perform the above hash with md5 the following code could be used:

#include <tomcrypt.h>

int main(void)

{

int idx, err;

unsigned long len;
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unsigned char out[MAXBLOCKSIZE];

/* register the hash */

if (register_hash(&md5_desc) == -1) {

printf("Error registering MD5.\n");

return -1;

}

/* get the index of the hash */

idx = find_hash("md5");

/* call the hash */

len = sizeof(out);

if ((err =

hash_memory(idx, "hello world", 11, out, &len)) != CRYPT_OK) {

printf("Error hashing data: %s\n", error_to_string(err));

return -1;

}

return 0;

}

6.2.1 Hash Registration

Similar to the cipher descriptor table you must register your hash algorithms before you can use
them. These functions work exactly like those of the cipher registration code. The functions are:

int register_hash(const struct _hash_descriptor *hash);

int unregister_hash(const struct _hash_descriptor *hash);

The following hashes are provided as of this release within the LibTomCrypt library:
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Name Descriptor Name Size of Message Digest (bytes)
WHIRLPOOL whirlpool desc 64

Keccak512 keccak 512 desc 64
SHA3-512 sha3 512 desc 64
SHA-512 sha512 desc 64

BLAKE2B-512 blake2b 512 desc 64
Keccak384 keccak 384 desc 48
SHA3-384 sha3 384 desc 48
SHA-384 sha384 desc 48

RIPEMD-320 rmd160 desc 40
SHA-512/256 sha512 256 desc 32

Keccak256 keccak 256 desc 32
SHA3-256 sha3 256 desc 32
SHA-256 sha256 desc 32

RIPEMD-256 rmd160 desc 32
BLAKE2S-256 blake2s 256 desc 32
BLAKE2B-256 blake2b 256 desc 32
SHA-512/224 sha512 224 desc 28

Keccak224 keccak 224 desc 28
SHA3-224 sha3 224 desc 28
SHA-224 sha224 desc 28

BLAKE2S-224 blake2s 224 desc 28
BLAKE2B-384 blake2b 384 desc 48

TIGER-192 tiger desc 24
SHA-1 sha1 desc 20

RIPEMD-160 rmd160 desc 20
BLAKE2S-160 blake2s 160 desc 20
BLAKE2B-160 blake2b 160 desc 20
RIPEMD-128 rmd128 desc 16

MD5 md5 desc 16
MD4 md4 desc 16
MD2 md2 desc 16

BLAKE2S-128 blake2s 128 desc 16

Figure 6.1: Built–In Software Hashes
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6.3 Cipher Hash Construction

An addition to the suite of hash functions is the Cipher Hash Construction or CHC mode. In this
mode applicable block ciphers (such as AES) can be turned into hash functions that other LTC
functions can use. In particular this allows a cryptosystem to be designed using very few moving
parts.

In order to use the CHC system the developer will have to take a few extra steps. First the
chc desc hash descriptor must be registered with register hash(). At this point the CHC hash
cannot be used to hash data. While it is in the hash system you still have to tell the CHC code
which cipher to use. This is accomplished via the chc register() function.

int chc_register(int cipher);

A cipher has to be registered with CHC (and also in the cipher descriptor tables with regis-
ter cipher()). The chc register() function will bind a cipher to the CHC system. Only one cipher
can be bound to the CHC hash at a time. There are additional requirements for the system to
work.

1. The cipher must have a block size greater than 64–bits.

2. The cipher must allow an input key the size of the block size.

Example of using CHC with the AES block cipher.

#include <tomcrypt.h>

int main(void)

{

int err;

/* register cipher and hash */

if (register_cipher(&aes_enc_desc) == -1) {

printf("Could not register cipher\n");

return EXIT_FAILURE;

}

if (register_hash(&chc_desc) == -1) {

printf("Could not register hash\n");

return EXIT_FAILURE;

}

/* start chc with AES */

if ((err = chc_register(find_cipher("aes"))) != CRYPT_OK) {

printf("Error binding AES to CHC: %s\n",

error_to_string(err));

}

/* now you can use chc_hash in any LTC function

* [aside from pkcs...] */

}
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6.4 SHA3 SHAKE

The SHA3 class of algorithms provides a special XOF (Extendable Output Functions) mode, called
SHAKE. SHAKE operates in 2 security configurations, 128bit or 256bit, and allows to generate
message digests of an arbitrary length.

For further information see https://en.wikipedia.org/wiki/SHA-3

Example of using SHAKE256 with an arbitrary length output.

#include <tomcrypt.h>

int main(void)

{

int err;

hash_state state;

const void* msg = "The quick brown fox jumps over the lazy dog";

unsigned char output[345];

if ((err = sha3_shake_init(&state, 256)) != CRYPT_OK) {

printf("Could not init SHAKE256 (%s)\n", error_to_string(err));

return EXIT_FAILURE;

}

if ((err = sha3_shake_process(&state, msg, strlen(msg))) != CRYPT_OK) {

printf("Could not process SHAKE256 (%s)\n", error_to_string(err));

return EXIT_FAILURE;

}

if ((err = sha3_shake_done(&state, output, sizeof(output))) != CRYPT_OK) {

printf("Could not finish SHAKE256 (%s)\n", error_to_string(err));

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

6.5 Notice

It is highly recommended that you not use the MD2, MD4, MD5, or SHA-1 hashes for the purposes
of digital signatures or authentication codes. These hashes are provided for completeness and they
still can be used for the purposes of password hashing or one-way accumulators (e.g. Yarrow).

The other hashes such as the SHA-2 (that includes SHA-512, SHA-512/384, SHA-384, SHA-
512/256, SHA-256 and SHA-224) and TIGER-192 are still considered secure for all purposes you
would normally use a hash for.

https://en.wikipedia.org/wiki/SHA-3


Chapter 7

Checksum Functions

7.1 Preface

The API for all checksum functions operate in mode: init – update – update – ... – finish.
The finish functions allow to output a partial result if necessary.

7.2 CRC-32 – Cyclic redundancy check

A Cyclic Redundancy Check is an error-detecting code, where LibTomCrypt implements CRC-32
with the polynomial 0x04C11DB7.

For further information see https://en.wikipedia.org/wiki/Cyclic_redundancy_check

void crc32_init(crc32_state *ctx);

void crc32_update(crc32_state *ctx, const unsigned char *input, unsigned long length);

void crc32_finish(crc32_state *ctx, void *hash, unsigned long size);

7.3 Adler-32

Adler-32 is a checksum algorithm.
For further information see https://en.wikipedia.org/wiki/Adler-32.

void adler32_init(adler32_state *ctx);

void adler32_update(adler32_state *ctx, const unsigned char *input, unsigned long length);

void adler32_finish(adler32_state *ctx, void *hash, unsigned long size);
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Chapter 8

Message Authentication Codes

8.1 HMAC Protocol

Thanks to Dobes Vandermeer, the library now includes support for hash based message authenti-
cation codes, or HMAC for short. An HMAC of a message is a keyed authentication code that only
the owner of a private symmetric key will be able to verify. The purpose is to allow an owner of
a private symmetric key to produce an HMAC on a message then later verify if it is correct. Any
impostor or eavesdropper will not be able to verify the authenticity of a message.

The HMAC support works much like the normal hash functions except that the initialization
routine requires you to pass a key and its length. The key is much like a key you would pass to
a cipher. That is, it is simply an array of octets stored in unsigned characters. The initialization
routine is:

int hmac_init( hmac_state *hmac,

int hash,

const unsigned char *key,

unsigned long keylen);

The hmac parameter is the state for the HMAC code. The hash parameter is the index into the
descriptor table of the hash you want to use to authenticate the message. The key parameter is the
pointer to the array of chars that make up the key. The keylen parameter is the length (in octets)
of the key you want to use to authenticate the message. To send octets of a message through the
HMAC system you must use the following function:

int hmac_process( hmac_state *hmac,

const unsigned char *in,

unsigned long inlen);

hmac is the HMAC state you are working with. in is the array of octets to send into the HMAC
process. inlen is the number of octets to process. Like the hash process routines, you can send the
data in arbitrarily sized chunks. When you are finished with the HMAC process you must call the
following function to get the HMAC code:

int hmac_done( hmac_state *hmac,

65
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unsigned char *out,

unsigned long *outlen);

The hmac parameter is the HMAC state you are working with. The out parameter is the array of
octets where the HMAC code should be stored. You must set outlen to the size of the destination
buffer before calling this function. It is updated with the length of the HMAC code produced
(depending on which hash was picked). If outlen is less than the size of the message digest (and
ultimately the HMAC code) then the HMAC code is truncated as per FIPS-198 specifications (e.g.
take the first outlen bytes).

There are two utility functions provided to make using HMACs easier to do. They accept the
key and information about the message (file pointer, address in memory), and produce the HMAC
result in one shot. These are useful if you want to avoid calling the three step process yourself.

int hmac_memory(

int hash,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

This will produce an HMAC code for the array of octets in in of length inlen. The index into
the hash descriptor table must be provided in hash. It uses the key from key with a key length of
keylen. The result is stored in the array of octets out and the length in outlen. The value of outlen
must be set to the size of the destination buffer before calling this function. Similarly for files there
is the following function:

int hmac_file(

int hash,

const char *fname,

const unsigned char *key, unsigned long keylen,

unsigned char *out, unsigned long *outlen);

hash is the index into the hash descriptor table of the hash you want to use. fname is the filename
to process. key is the array of octets to use as the key of length keylen. out is the array of octets
where the result should be stored.

To test if the HMAC code is working there is the following function:

int hmac_test(void);

Which returns CRYPT OK if the code passes otherwise it returns an error code. Some example
code for using the HMAC system is given below.

#include <tomcrypt.h>

int main(void)

{

int idx, err;

hmac_state hmac;

unsigned char key[16], dst[MAXBLOCKSIZE];

unsigned long dstlen;
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/* register SHA-1 */

if (register_hash(&sha1_desc) == -1) {

printf("Error registering SHA1\n");

return -1;

}

/* get index of SHA1 in hash descriptor table */

idx = find_hash("sha1");

/* we would make up our symmetric key in "key[]" here */

/* start the HMAC */

if ((err = hmac_init(&hmac, idx, key, 16)) != CRYPT_OK) {

printf("Error setting up hmac: %s\n", error_to_string(err));

return -1;

}

/* process a few octets */

if((err = hmac_process(&hmac, "hello", 5) != CRYPT_OK) {

printf("Error processing hmac: %s\n", error_to_string(err));

return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = hmac_done(&hmac, dst, &dstlen)) != CRYPT_OK) {

printf("Error finishing hmac: %s\n", error_to_string(err));

return -1;

}

printf("The hmac is %lu bytes long\n", dstlen);

/* return */

return 0;

}

8.2 OMAC Support

OMAC1, which stands for One-Key CBC MAC is an algorithm which produces a Message Authen-
tication Code (MAC) using only a block cipher such as AES. Note: OMAC has been standardized
as CMAC within NIST, for the purposes of this library OMAC and CMAC are synonymous. From
an API standpoint, the OMAC routines work much like the HMAC routines. Instead, in this case
a cipher is used instead of a hash.

To start an OMAC state you call

int omac_init( omac_state *omac,

int cipher,

const unsigned char *key,

1http://crypt.cis.ibaraki.ac.jp/omac/omac.html

http://crypt.cis.ibaraki.ac.jp/omac/omac.html


68 www.libtom.net

unsigned long keylen);

The omac parameter is the state for the OMAC algorithm. The cipher parameter is the index into
the cipher descriptor table of the cipher2 you wish to use. The key and keylen parameters are the
keys used to authenticate the data.

To send data through the algorithm call

int omac_process( omac_state *state,

const unsigned char *in,

unsigned long inlen);

This will send inlen bytes from in through the active OMAC state state. Returns CRYPT OK if
the function succeeds. The function is not sensitive to the granularity of the data. For example,

omac_process(&mystate, "hello", 5);

omac_process(&mystate, " world", 6);

Would produce the same result as,

omac_process(&mystate, "hello world", 11);

When you are done processing the message you can call the following to compute the message
tag.

int omac_done( omac_state *state,

unsigned char *out,

unsigned long *outlen);

Which will terminate the OMAC and output the tag (MAC) to out. Note that unlike the HMAC
and other code outlen can be smaller than the default MAC size (for instance AES would make a
16-byte tag). Part of the OMAC specification states that the output may be truncated. So if you
pass in outlen = 5 and use AES as your cipher than the output MAC code will only be five bytes
long. If outlen is larger than the default size it is set to the default size to show how many bytes
were actually used.

Similar to the HMAC code the file and memory functions are also provided. To OMAC a buffer
of memory in one shot use the following function.

int omac_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

This will compute the OMAC of inlen bytes of in using the key key of length keylen bytes and the
cipher specified by the cipher ’th entry in the cipher descriptor table. It will store the MAC in out
with the same rules as omac done.

To OMAC a file use

2The cipher must have a 64 or 128 bit block size. Such as CAST5, Blowfish, DES, AES, Twofish, etc.
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int omac_file(

int cipher,

const unsigned char *key, unsigned long keylen,

const char *filename,

unsigned char *out, unsigned long *outlen);

Which will OMAC the entire contents of the file specified by filename using the key key of
length keylen bytes and the cipher specified by the cipher ’th entry in the cipher descriptor table.
It will store the MAC in out with the same rules as omac done.

To test if the OMAC code is working there is the following function:

int omac_test(void);

Which returns CRYPT OK if the code passes otherwise it returns an error code. Some example
code for using the OMAC system is given below.

#include <tomcrypt.h>

int main(void)

{

int idx, err;

omac_state omac;

unsigned char key[16], dst[MAXBLOCKSIZE];

unsigned long dstlen;

/* register Rijndael */

if (register_cipher(&rijndael_desc) == -1) {

printf("Error registering Rijndael\n");

return -1;

}

/* get index of Rijndael in cipher descriptor table */

idx = find_cipher("rijndael");

/* we would make up our symmetric key in "key[]" here */

/* start the OMAC */

if ((err = omac_init(&omac, idx, key, 16)) != CRYPT_OK) {

printf("Error setting up omac: %s\n", error_to_string(err));

return -1;

}

/* process a few octets */

if((err = omac_process(&omac, "hello", 5) != CRYPT_OK) {

printf("Error processing omac: %s\n", error_to_string(err));

return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = omac_done(&omac, dst, &dstlen)) != CRYPT_OK) {

printf("Error finishing omac: %s\n", error_to_string(err));
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return -1;

}

printf("The omac is %lu bytes long\n", dstlen);

/* return */

return 0;

}

8.3 PMAC Support

The PMAC3 protocol is another MAC algorithm that relies solely on a symmetric-key block cipher.
It uses essentially the same API as the provided OMAC code.

A PMAC state is initialized with the following.

int pmac_init( pmac_state *pmac,

int cipher,

const unsigned char *key,

unsigned long keylen);

Which initializes the pmac state with the given cipher and key of length keylen bytes. The chosen
cipher must have a 64 or 128 bit block size (e.x. AES).

To MAC data simply send it through the process function.

int pmac_process( pmac_state *state,

const unsigned char *in,

unsigned long inlen);

This will process inlen bytes of in in the given state. The function is not sensitive to the granularity
of the data. For example,

pmac_process(&mystate, "hello", 5);

pmac_process(&mystate, " world", 6);

Would produce the same result as,

pmac_process(&mystate, "hello world", 11);

When a complete message has been processed the following function can be called to compute
the message tag.

int pmac_done( pmac_state *state,

unsigned char *out,

unsigned long *outlen);

This will store up to outlen bytes of the tag for the given state into out. Note that if outlen is larger
than the size of the tag it is set to the amount of bytes stored in out.

Similar to the OMAC code the file and memory functions are also provided. To PMAC a buffer
of memory in one shot use the following function.

3J.Black, P.Rogaway, A Block–Cipher Mode of Operation for Parallelizable Message Authentication
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int pmac_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

This will compute the PMAC of msglen bytes of msg using the key key of length keylen bytes, and
the cipher specified by the cipher ’th entry in the cipher descriptor table. It will store the MAC in
out with the same rules as pmac done().

To PMAC a file use

int pmac_file(

int cipher,

const unsigned char *key, unsigned long keylen,

const char *filename,

unsigned char *out, unsigned long *outlen);

Which will PMAC the entire contents of the file specified by filename using the key key of length
keylen bytes, and the cipher specified by the cipher ’th entry in the cipher descriptor table. It will
store the MAC in out with the same rules as pmac done().

To test if the PMAC code is working there is the following function:

int pmac_test(void);

Which returns CRYPT OK if the code passes otherwise it returns an error code.

8.4 Pelican MAC

Pelican MAC is a new (experimental) MAC by the AES team that uses four rounds of AES as a
mixing function. It achieves a very high rate of processing and is potentially very secure. It requires
AES to be enabled to function. You do not have to register cipher() AES first though as it calls
AES directly.

int pelican_init( pelican_state *pelmac,

const unsigned char *key,

unsigned long keylen);

This will initialize the Pelican state with the given AES key. Once this has been done you can
begin processing data.

int pelican_process( pelican_state *pelmac,

const unsigned char *in,

unsigned long inlen);

This will process inlen bytes of in through the Pelican MAC. It’s best that you pass in multiples
of 16 bytes as it makes the routine more efficient but you may pass in any length of text. You can
call this function as many times as required to process an entire message.

int pelican_done(pelican_state *pelmac, unsigned char *out);

This terminates a Pelican MAC and writes the 16–octet tag to out.
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8.4.1 Example

#include <tomcrypt.h>

int main(void)

{

pelican_state pelstate;

unsigned char key[32], tag[16];

int err;

/* somehow initialize a key */

/* initialize pelican mac */

if ((err = pelican_init(&pelstate, /* the state */

key, /* user key */

32 /* key length in octets */

)) != CRYPT_OK) {

printf("Error initializing Pelican: %s",

error_to_string(err));

return EXIT_FAILURE;

}

/* MAC some data */

if ((err = pelican_process(&pelstate, /* the state */

"hello world", /* data to mac */

11 /* length of data */

)) != CRYPT_OK) {

printf("Error processing Pelican: %s",

error_to_string(err));

return EXIT_FAILURE;

}

/* Terminate the MAC */

if ((err = pelican_done(&pelstate,/* the state */

tag /* where to store the tag */

)) != CRYPT_OK) {

printf("Error terminating Pelican: %s",

error_to_string(err));

return EXIT_FAILURE;

}

/* tag[0..15] has the MAC output now */

return EXIT_SUCCESS;

}
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8.5 XCBC-MAC

As of LibTomCrypt v1.15, XCBC-MAC (RFC 3566) has been provided to support TLS encryption
suites. Like OMAC, it computes a message authentication code by using a cipher in CBC mode.
It also uses a single key which it expands into the requisite three keys for the MAC function. A
XCBC–MAC state is initialized with the following function:

int xcbc_init( xcbc_state *xcbc,

int cipher,

const unsigned char *key,

unsigned long keylen);

This will initialize the XCBC–MAC state xcbc, with the key specified in key of length keylen
octets. The cipher indicated by the cipher index can be either a 64 or 128–bit block cipher. This
will return CRYPT OK on success.

It is possible to use XCBC in a three key mode by OR’ing the value LTC XCBC PURE
against the keylen parameter. In this mode, the key is interpretted as three keys. If the cipher
has a block size of n octets, the first key is then keylen − 2n octets and is the encryption key.
The next 2n octets are the K1 and K2 padding keys (used on the last block). For example, to use
AES–192 keylen should be 24 + 2 · 16 = 56 octets. The three keys are interpretted as if they were
concatenated in the key buffer.

To process data through XCBC–MAC use the following function:

int xcbc_process( xcbc_state *state,

const unsigned char *in,

unsigned long inlen);

This will add the message octets pointed to by in of length inlen to the XCBC–MAC state
pointed to by state. Like the other MAC functions, the granularity of the input is not important
but the order is. This will return CRYPT OK on success.

To compute the MAC tag value use the following function:

int xcbc_done( xcbc_state *state,

unsigned char *out,

unsigned long *outlen);

This will retrieve the XCBC–MAC tag from the state pointed to by state, and store it in the
array pointed to by out. The outlen parameter specifies the maximum size of the destination
buffer, and is updated to hold the final size of the tag when the function returns. This will return
CRYPT OK on success.

Helper functions are provided to make parsing memory buffers and files easier. The following
functions are provided:

int xcbc_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);
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This will compute the XCBC–MAC of msglen bytes of msg, using the key key of length keylen
bytes, and the cipher specified by the cipher ’th entry in the cipher descriptor table. It will store
the MAC in out with the same rules as xcbc done().

To xcbc a file use

int xcbc_file(

int cipher,

const unsigned char *key, unsigned long keylen,

const char *filename,

unsigned char *out, unsigned long *outlen);

Which will XCBC–MAC the entire contents of the file specified by filename using the key key of
length keylen bytes, and the cipher specified by the cipher ’th entry in the cipher descriptor table.
It will store the MAC in out with the same rules as xcbc done().

To test XCBC–MAC for RFC 3566 compliance use the following function:

int xcbc_test(void);

This will return CRYPT OK on success. This requires the AES or Rijndael descriptor be
previously registered, otherwise, it will return CRYPT NOP.

8.6 F9–MAC

The F9–MAC is yet another CBC–MAC variant proposed for the 3GPP standard. Originally
specified to be used with the KASUMI block cipher, it can also be used with other ciphers. For
LibTomCrypt, the F9–MAC code can use any cipher.

8.6.1 Usage Notice

F9–MAC differs slightly from the other MAC functions in that it requires the caller to perform the
final message padding. The padding quite simply is a direction bit followed by a 1 bit and enough
zeros to make the message a multiple of the cipher block size. If the message is byte aligned, the
padding takes on the form of a single 0x40 or 0xC0 byte followed by enough 0x00 bytes to make
the message proper multiple.

If the user simply wants a MAC function (hint: use OMAC) padding with a single 0x40 byte
should be sufficient for security purposes and still be reasonably compatible with F9–MAC.

8.6.2 F9–MAC Functions

A F9–MAC state is initialized with the following function:

int f9_init( f9_state *f9,

int cipher,

const unsigned char *key,

unsigned long keylen);
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This will initialize the F9–MAC state f9, with the key specified in key of length keylen octets.
The cipher indicated by the cipher index can be either a 64 or 128–bit block cipher. This will
return CRYPT OK on success.

To process data through F9–MAC use the following function:

int f9_process( f9_state *state,

const unsigned char *in,

unsigned long inlen);

This will add the message octets pointed to by in of length inlen to the F9–MAC state pointed
to by state. Like the other MAC functions, the granularity of the input is not important but the
order is. This will return CRYPT OK on success.

To compute the MAC tag value use the following function:

int f9_done( f9_state *state,

unsigned char *out,

unsigned long *outlen);

This will retrieve the F9–MAC tag from the state pointed to by state, and store it in the array
pointed to by out. The outlen parameter specifies the maximum size of the destination buffer, and is
updated to hold the final size of the tag when the function returns. This will return CRYPT OK
on success.

Helper functions are provided to make parsing memory buffers and files easier. The following
functions are provided:

int f9_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

This will compute the F9–MAC of msglen bytes of msg, using the key key of length keylen bytes,
and the cipher specified by the cipher ’th entry in the cipher descriptor table. It will store the MAC
in out with the same rules as f9 done().

To F9–MAC a file use

int f9_file(

int cipher,

const unsigned char *key, unsigned long keylen,

const char *filename,

unsigned char *out, unsigned long *outlen);

Which will F9–MAC the entire contents of the file specified by filename using the key key of
length keylen bytes, and the cipher specified by the cipher ’th entry in the cipher descriptor table.
It will store the MAC in out with the same rules as f9 done().

To test f9–MAC for RFC 3566 compliance use the following function:

int f9_test(void);

This will return CRYPT OK on success. This requires the AES or Rijndael descriptor be
previously registered, otherwise, it will return CRYPT NOP.
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8.7 Poly1305–MAC

The Poly1305–MAC is a cryptographic message authentication code created by Daniel J. Bernstein.
More info at https://en.wikipedia.org/wiki/Poly1305.

A Poly1305–MAC state is initialized with the following function:

int poly1305_init( poly1305_state *st,

const unsigned char *key,

unsigned long keylen);

This will initialize the Poly1305–MAC state st, with the key specified in key of length keylen octets
(always 32).

To process data through Poly1305–MAC use the following function:

int poly1305_process( poly1305_state *st,

const unsigned char *in,

unsigned long inlen);

This will add the message octets pointed to by in of length inlen to the Poly1305–MAC state
pointed to by st.

To compute the MAC tag value use the following function:

int poly1305_done(poly1305_state *st,

unsigned char *mac,

unsigned long *maclen);

This will retrieve the Poly1305–MAC tag from the state pointed to by st, and store it in the
array pointed to by mac. The maclen parameter specifies the maximum size of the destination
buffer, and is updated to hold the final size of the tag when the function returns.

Helper functions are provided to make parsing memory buffers and files easier. The following
functions are provided:

int poly1305_memory(const unsigned char *key,

unsigned long keylen,

const unsigned char *in,

unsigned long inlen,

unsigned char *mac,

unsigned long *maclen);

This will compute the Poly1305–MAC of inlen bytes of in, using the key key of length keylen bytes.
It will store the MAC in mac with the same rules as poly1305 done().

To Poly1305–MAC a file use

int poly1305_file( const char *fname,

const unsigned char *key,

unsigned long keylen,

unsigned char *mac,

unsigned long *maclen);

Which will Poly1305–MAC the entire contents of the file specified by fname using the key key
of length keylen bytes. It will store the MAC in mac with the same rules as poly1305 done().

https://en.wikipedia.org/wiki/Poly1305
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8.8 BLAKE2s + BLAKE2b MAC

The BLAKE2s and BLAKE2b are cryptographic message authentication code designed by Jean–
Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Winnerlein. More info
at https://tools.ietf.org/html/rfc7693.

A BLAKE2s/b–MAC state is initialized with the following function:

int blake2smac_init(blake2smac_state *st,

unsigned long outlen,

const unsigned char *key,

unsigned long keylen);

int blake2bmac_init(blake2smac_state *st,

unsigned long outlen,

const unsigned char *key,

unsigned long keylen);

This will initialize the BLAKE2s/b–MAC state st, with the key specified in key of length keylen
octets (up to 64). The outlen specifies the size of the final tag (up to 64 octets).

To process data through BLAKE2s/b–MAC use the following function:

int blake2smac_process( blake2smac_state *st,

const unsigned char *in,

unsigned long inlen);

int blake2bmac_process( blake2bmac_state *st,

const unsigned char *in,

unsigned long inlen);

This will add the message octets pointed to by in of length inlen to the BLAKE2s/b–MAC
state pointed to by st.

To compute the MAC tag value use the following function:

int blake2smac_done(blake2smac_state *st,

unsigned char *mac,

unsigned long *maclen);

int blake2bmac_done(blake2bmac_state *st,

unsigned char *mac,

unsigned long *maclen);

This will retrieve the BLAKE2s/b–MAC tag from the state pointed to by st, and store it in
the array pointed to by mac. The maclen parameter specifies the maximum size of the destination
buffer, and is updated to hold the final size of the tag when the function returns.

Helper functions are provided to make parsing memory buffers and files easier. The following
functions are provided:

https://tools.ietf.org/html/rfc7693
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int blake2smac_memory(const unsigned char *key,

unsigned long keylen,

const unsigned char *in,

unsigned long inlen,

unsigned char *mac,

unsigned long *maclen);

int blake2bmac_memory(const unsigned char *key,

unsigned long keylen,

const unsigned char *in,

unsigned long inlen,

unsigned char *mac,

unsigned long *maclen);

This will compute the BLAKE2s/b–MAC of inlen bytes of in, using the key key of length keylen
bytes. It will store the MAC in mac with the same rules as blake2smac done().

To BLAKE2s/b–MAC a file use

int blake2smac_file( const char *fname,

const unsigned char *key,

unsigned long keylen,

unsigned char *mac,

unsigned long *maclen);

int blake2bmac_file( const char *fname,

const unsigned char *key,

unsigned long keylen,

unsigned char *mac,

unsigned long *maclen);

Which will BLAKE2s/b–MAC the entire contents of the file specified by fname using the key
key of length keylen bytes. It will store the MAC in mac with the same rules as blake2smac done().



Chapter 9

Pseudo-Random Number
Generators

9.1 Core Functions

The library provides an array of core functions for Pseudo-Random Number Generators (PRNGs)
as well. A cryptographic PRNG is used to expand a shorter bit string into a longer bit string.
PRNGs are used wherever random data is required such as Public Key (PK) key generation. There
is a universal structure called prng state. To initialize a PRNG call:

int XXX_start(prng_state *prng);

This will setup the PRNG for future use and not seed it. In order for the PRNG to be crypto-
graphically useful you must give it entropy. Ideally you’d have some OS level source to tap like in
UNIX. To add entropy to the PRNG call:

int XXX_add_entropy(const unsigned char *in,

unsigned long inlen,

prng_state *prng);

Which returns CRYPT OK if the entropy was accepted. Once you think you have enough entropy
you call another function to put the entropy into action.

int XXX_ready(prng_state *prng);

Which returns CRYPT OK if it is ready. Finally to actually read bytes call:

unsigned long XXX_read(unsigned char *out,

unsigned long outlen,

prng_state *prng);

Which returns the number of bytes read from the PRNG. When you are finished with a PRNG
state you call the following.

void XXX_done(prng_state *prng);
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This will terminate a PRNG state and free any memory (if any) allocated. To export a PRNG
state so that you can later resume the PRNG call the following.

int XXX_export(unsigned char *out,

unsigned long *outlen,

prng_state *prng);

This will write a PRNG state to the buffer out of length outlen bytes. The idea of the export
is meant to be used as a seed file. That is, when the program starts up there will not likely be that
much entropy available. To import a state to seed a PRNG call the following function.

int XXX_import(const unsigned char *in,

unsigned long inlen,

prng_state *prng);

This will call the start and add entropy functions of the given PRNG. It will use the state in
in of length inlen as the initial seed. You must pass the same seed length as was exported by the
corresponding export function.

Note that importing a state will not resume the PRNG from where it left off. That is, if you
export a state, emit (say) 8 bytes and then import the previously exported state the next 8 bytes
will not specifically equal the 8 bytes you generated previously.

When a program is first executed the normal course of operation is:

1. Gather entropy from your sources for a given period of time or number of events.

2. Start, use your entropy via add entropy and ready the PRNG yourself.

When your program is finished you simply call the export function and save the state to a
medium (disk, flash memory, etc). The next time your application starts up you can detect the
state, feed it to the import function and go on your way. It is ideal that (as soon as possible) after
start up you export a fresh state. This helps in the case that the program aborts or the machine is
powered down without being given a chance to exit properly.

Note that even if you have a state to import it is important to add new entropy to the state.
However, there is less pressure to do so.

To test a PRNG for operational conformity call the following functions.

int XXX_test(void);

This will return CRYPT OK if PRNG is operating properly.

9.1.1 Remarks

It is possible to be adding entropy and reading from a PRNG at the same time. For example, if
you first seed the PRNG and call ready() you can now read from it. You can also keep adding new
entropy to it. The new entropy will not be used in the PRNG until ready() is called again. This
allows the PRNG to be used and re-seeded at the same time. No real error checking is guaranteed
to see if the entropy is sufficient, or if the PRNG is even in a ready state before reading.
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9.1.2 Example

Below is a simple snippet to read 10 bytes from Yarrow. It is important to note that this snippet
is NOT secure since the entropy added is not random.

#include <tomcrypt.h>

int main(void)

{

prng_state prng;

unsigned char buf[10];

int err;

/* start it */

if ((err = yarrow_start(&prng)) != CRYPT_OK) {

printf("Start error: %s\n", error_to_string(err));

}

/* add entropy */

if ((err = yarrow_add_entropy("hello world", 11, &prng))

!= CRYPT_OK) {

printf("Add_entropy error: %s\n", error_to_string(err));

}

/* ready and read */

if ((err = yarrow_ready(&prng)) != CRYPT_OK) {

printf("Ready error: %s\n", error_to_string(err));

}

printf("Read %lu bytes from yarrow\n",

yarrow_read(buf, sizeof(buf), &prng));

return 0;

}

9.2 PRNG Descriptors

PRNGs have descriptors that allow plugin driven functions to be created using PRNGs. The plugin
descriptors are stored in the structure prng descriptor. The format of an element is:

struct _prng_descriptor {

char *name;

int export_size; /* size in bytes of exported state */

int (*start) (prng_state *);

int (*add_entropy)(const unsigned char *, unsigned long,

prng_state *);

int (*ready) (prng_state *);

unsigned long (*read)(unsigned char *, unsigned long len,
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prng_state *);

void (*done)(prng_state *);

int (*pexport)(unsigned char *, unsigned long *, prng_state *);

int (*pimport)(const unsigned char *, unsigned long, prng_state *);

int (*test)(void);

};

To find a PRNG in the descriptor table the following function can be used:

int find_prng(const char *name);

This will search the PRNG descriptor table for the PRNG named name. It will return -1 if the
PRNG is not found, otherwise, it returns the index into the descriptor table.

Just like the ciphers and hashes, you must register your prng before you can use it. The two
functions provided work exactly as those for the cipher registry functions. They are the following:

int register_prng(const struct _prng_descriptor *prng);

int unregister_prng(const struct _prng_descriptor *prng);

The register function will register the PRNG, and return the index into the table where it was
placed (or -1 for error). It will avoid registering the same descriptor twice, and will return the
index of the current placement in the table if the caller attempts to register it more than once. The
unregister function will return CRYPT OK if the PRNG was found and removed. Otherwise, it
returns CRYPT ERROR.

9.2.1 PRNGs Provided

Name Descriptor Usage

ChaCha20 chacha20 prng desc Stream Cipher PRNG (recommended, fast)

Fortuna fortuna desc Fast long-term PRNG (recommended, secure)

RC4 rc4 desc Stream Cipher PRNG

SOBER-128 sober128 desc Stream Cipher PRNG

sprng sprng desc Secure PRNG using the System RNG

Yarrow yarrow desc Fast short-term PRNG

Figure 9.1: List of Provided PRNGs

Yarrow

Yarrow is fast PRNG meant to collect an unspecified amount of entropy from sources (keyboard,
mouse, interrupts, etc), and produce an unbounded string of random bytes.

Note: This PRNG is still secure for most tasks but is no longer recommended. Users should
use Fortuna or ChaCha20 instead.
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Fortuna

Fortuna is a fast attack tolerant and more thoroughly designed PRNG suitable for long term usage.
It is faster than the default implementation of Yarrow1 while providing more security.

Fortuna is slightly less flexible than Yarrow in the sense that it only works with the AES block
cipher and SHA–256 hash function. Technically, Fortuna will work with any block cipher that
accepts a 256–bit key, and any hash that produces at least a 256–bit output. However, to make the
implementation simpler it has been fixed to those choices.

Fortuna is more secure than Yarrow in the sense that attackers who learn parts of the entropy
being added to the PRNG learn far less about the state than that of Yarrow. Without getting into
too many details Fortuna has the ability to recover from state determination attacks where the
attacker starts to learn information from the PRNGs output about the internal state. Yarrow on
the other hand, cannot recover from that problem until new entropy is added to the pool and put
to use through the ready() function.

For detailed information on how the algorithm works and what you have to do to maintain the
secure state get a copy of the book2 or read the paper online3.

Fortuna provides additional API functions to be able to implement some of the important steps
proposed in the original algorithm specification.

int fortuna_add_random_event( unsigned long source, unsigned long pool,

const unsigned char *in, unsigned long inlen,

prng_state *prng);

fortuna add random event() can be used as a powerful alternative to the more general add entropy().

int fortuna_update_seed(const unsigned char *in, unsigned long inlen,

prng_state *prng);

fortuna update seed() can be used to implement the UpdateSeedFile function from the original
specification.

RC4

RC4 is an old stream cipher that can also double duty as a PRNG in a pinch. You key RC4 by
calling add entropy(), and setup the key by calling ready().

You really should not use RC4 for cryptographical purposes, it’s broken.

SOBER-128

SOBER–128 is a stream cipher designed by the QUALCOMM Australia team. Like RC4, you key it
by calling add entropy(). There is no need to call ready() for this PRNG as it does not do anything.

Note: this cipher has several oddities about how it operates. The first call to add entropy() sets
the cipher’s key. Every other time call to the add entropy() function sets the cipher’s IV variable.
The IV mechanism allows you to encrypt several messages with the same key, and not re–use the
same key material.

1Yarrow has been implemented to work with most cipher and hash combos based on which you have chosen to
build into the library.

2Niels Ferguson and Bruce Schneier, Practical Cryptography. ISBN 0-471-22357-3.
3https://www.schneier.com/academic/paperfiles/fortuna.pdf [Accessed on 7th Dec. 2017]

https://www.schneier.com/academic/paperfiles/fortuna.pdf
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Unlike Yarrow and Fortuna, all of the entropy (and hence security) of this algorithm rests in
the data you pass it on the first call to add entropy(). All buffers sent to add entropy() must have
a length that is a multiple of four bytes.

Like RC4, the output of SOBER–128 is XOR’ed against the buffer you provide it. In this
manner, you can use sober128 read() as an encrypt (and decrypt) function.

Since SOBER–128 has a fixed keying scheme, and is very fast (faster than RC4) the ideal usage
of SOBER-128 is to key it from the output of Fortuna (or Yarrow), and use it to encrypt messages.
It is also ideal for simulations which need a high quality (and fast) stream of bytes.

ChaCha20

ChaCha20 is a fast stream cipher built on a pseudorandom function designed by Daniel J. Bernstein.
It can also double duty as a PRNG.

It is recommended to use 40 bytes of truly random bytes for initialization.
The implementation supports adding entropy via the add entropy() function while already being

operational.

Example Usage

#include <tomcrypt.h>

int main(void)

{

prng_state prng;

unsigned char buf[32];

int err;

if ((err = rc4_start(&prng)) != CRYPT_OK) {

printf("RC4 init error: %s\n", error_to_string(err));

exit(-1);

}

/* use "key" as the key */

if ((err = rc4_add_entropy("key", 3, &prng)) != CRYPT_OK) {

printf("RC4 add entropy error: %s\n", error_to_string(err));

exit(-1);

}

/* setup RC4 for use */

if ((err = rc4_ready(&prng)) != CRYPT_OK) {

printf("RC4 ready error: %s\n", error_to_string(err));

exit(-1);

}

/* encrypt buffer */

strcpy(buf,"hello world");

if (rc4_read(buf, 11, &prng) != 11) {

printf("RC4 read error\n");

exit(-1);

}
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return 0;

}

To decrypt you have to do the exact same steps.

9.3 The Secure RNG

An RNG is related to a PRNG in many ways, except that it does not expand a smaller seed to
get the data. They generate their random bits by performing some computation on fresh input
bits. Possibly the hardest thing to get correctly in a cryptosystem is the PRNG. Computers are
deterministic that try hard not to stray from pre–determined paths. This makes gathering entropy
needed to seed a PRNG a hard task.

There is one small function that may help on certain platforms:

unsigned long rng_get_bytes(

unsigned char *buf,

unsigned long len,

void (*callback)(void));

Which will try one of three methods of getting random data. The first is to open the popular
/dev/random device which on most *NIX platforms provides cryptographic random bits4. The
second method is to try the Microsoft Cryptographic Service Provider, and read the RNG. The
third method is an ANSI C clock drift method that is also somewhat popular but gives bits of lower
entropy. The callback parameter is a pointer to a function that returns void. It is used when the
slower ANSI C RNG must be used so the calling application can still work. This is useful since
the ANSI C RNG has a throughput of roughly three bytes a second. The callback pointer may be
set to NULL to avoid using it if you do not want to. The function returns the number of bytes
actually read from any RNG source. There is a function to help setup a PRNG as well:

int rng_make_prng( int bits,

int wprng,

prng_state *prng,

void (*callback)(void));

This will try to initialize the prng with a state of at least bits of entropy. The callback parameter
works much like the callback in rng get bytes(). It is highly recommended that you use this function
to setup your PRNGs unless you have a platform where the RNG does not work well. Example
usage of this function is given below:

#include <tomcrypt.h>

int main(void)

{

ecc_key mykey;

prng_state prng;

int err;

4This device is available in Windows through the Cygwin compiler suite. It emulates /dev/random via the
Microsoft CSP.
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/* register yarrow */

if (register_prng(&yarrow_desc) == -1) {

printf("Error registering Yarrow\n");

return -1;

}

/* setup the PRNG */

if ((err = rng_make_prng(128, find_prng("yarrow"), &prng, NULL))

!= CRYPT_OK) {

printf("Error setting up PRNG, %s\n", error_to_string(err));

return -1;

}

/* make a 192-bit ECC key */

if ((err = ecc_make_key(&prng, find_prng("yarrow"), 24, &mykey))

!= CRYPT_OK) {

printf("Error making key: %s\n", error_to_string(err));

return -1;

}

return 0;

}

9.3.1 The Secure PRNG Interface

It is possible to access the secure RNG through the PRNG interface, and in turn use it within
dependent functions such as the PK API. This simplifies the cryptosystem on platforms where
the secure RNG is fast. The secure PRNG never requires to be started, that is you need not call
the start, add entropy, or ready functions. For example, consider the previous example using this
PRNG.

#include <tomcrypt.h>

int main(void)

{

ecc_key mykey;

int err;

/* register SPRNG */

if (register_prng(&sprng_desc) == -1) {

printf("Error registering SPRNG\n");

return -1;

}

/* make a 192-bit ECC key */

if ((err = ecc_make_key(NULL, find_prng("sprng"), 24, &mykey))

!= CRYPT_OK) {

printf("Error making key: %s\n", error_to_string(err));

return -1;

}

return 0;

}
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RSA Public Key Cryptography

10.1 Introduction

RSA wrote the PKCS #1 specifications which detail RSA Public Key Cryptography. In the specifi-
cations are padding algorithms for encryption and signatures. The standard includes the v1.5 and
v2.1 algorithms. To simplify matters a little the v2.1 encryption and signature padding algorithms
are called OAEP and PSS respectively.

10.2 PKCS #1 Padding

PKCS #1 v1.5 padding is so simple that both signature and encryption padding are performed
by the same function. Note: the signature padding does not include the ASN.1 padding required.
That is performed by the rsa sign hash ex() function documented later on in this chapter.

10.2.1 PKCS #1 v1.5 Encoding

The following function performs PKCS #1 v1.5 padding:

int pkcs_1_v1_5_encode(

const unsigned char *msg,

unsigned long msglen,

int block_type,

unsigned long modulus_bitlen,

prng_state *prng,

int prng_idx,

unsigned char *out,

unsigned long *outlen);

This will encode the message pointed to by msg of length msglen octets. The block type pa-
rameter must be set to LTC PKCS 1 EME to perform encryption padding. It must be set to
LTC PKCS 1 EMSA to perform signature padding. The modulus bitlen parameter indicates the
length of the modulus in bits. The padded data is stored in out with a length of outlen octets. The
output will not be longer than the modulus which helps allocate the correct output buffer size.
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Only encryption padding requires a PRNG. When performing signature padding the prng idx
parameter may be left to zero as it is not checked for validity.

10.2.2 PKCS #1 v1.5 Decoding

The following function performs PKCS #1 v1.5 de–padding:

int pkcs_1_v1_5_decode(

const unsigned char *msg,

unsigned long msglen,

int block_type,

unsigned long modulus_bitlen,

unsigned char *out,

unsigned long *outlen,

int *is_valid);

This will remove the PKCS padding data pointed to by msg of length msglen. The decoded data is
stored in out of length outlen. If the padding is valid, a 1 is stored in is valid, otherwise, a 0 is stored.
The block type parameter must be set to either LTC PKCS 1 EME or LTC PKCS 1 EMSA
depending on whether encryption or signature padding is being removed.

10.3 PKCS #1 v2.1 Encryption

PKCS #1 RSA Encryption amounts to OAEP padding of the input message followed by the modular
exponentiation. As far as this portion of the library is concerned we are only dealing with th OAEP
padding of the message.

10.3.1 OAEP Encoding

The following function performs PKCS #1 v2.1 encryption padding:

int pkcs_1_oaep_encode(

const unsigned char *msg,

unsigned long msglen,

const unsigned char *lparam,

unsigned long lparamlen,

unsigned long modulus_bitlen,

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned char *out,

unsigned long *outlen);

This accepts msg as input of length msglen which will be OAEP padded. The lparam variable
is an additional system specific tag that can be applied to the encoding. This is useful to identify
which system encoded the message. If no variance is desired then lparam can be set to NULL.
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OAEP encoding requires the length of the modulus in bits in order to calculate the size of
the output. This is passed as the parameter modulus bitlen. hash idx is the index into the hash
descriptor table of the hash desired. PKCS #1 allows any hash to be used but both the encoder
and decoder must use the same hash in order for this to succeed. The size of hash output affects the
maximum sized input message. prng idx and prng are the random number generator arguments
required to randomize the padding process. The padded message is stored in out along with the
length in outlen.

If h is the length of the hash and m the length of the modulus (both in octets) then the maximum
payload for msg is m− 2h− 2. For example, with a 1024–bit RSA key and SHA–1 as the hash the
maximum payload is 86 bytes.

Note that when the message is padded it still has not been RSA encrypted. You must pass the
output of this function to rsa exptmod() to encrypt it.

10.3.2 OAEP Decoding

int pkcs_1_oaep_decode(

const unsigned char *msg,

unsigned long msglen,

const unsigned char *lparam,

unsigned long lparamlen,

unsigned long modulus_bitlen,

int hash_idx,

unsigned char *out,

unsigned long *outlen,

int *res);

This function decodes an OAEP encoded message and outputs the original message that was
passed to the OAEP encoder. msg is the output of pkcs 1 oaep encode() of length msglen. lparam
is the same system variable passed to the OAEP encoder. If it does not match what was used
during encoding this function will not decode the packet. modulus bitlen is the size of the RSA
modulus in bits and must match what was used during encoding. Similarly the hash idx index into
the hash descriptor table must match what was used during encoding.

If the function succeeds it decodes the OAEP encoded message into out of length outlen and
stores a 1 in res. If the packet is invalid it stores 0 in res and if the function fails for another reason
it returns an error code.

10.4 PKCS #1 Digital Signatures

10.4.1 PSS Encoding

PSS encoding is the second half of the PKCS #1 standard which is padding to be applied to
messages that are signed.

int pkcs_1_pss_encode(

const unsigned char *msghash,

unsigned long msghashlen,

unsigned long saltlen,
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prng_state *prng,

int prng_idx,

int hash_idx,

unsigned long modulus_bitlen,

unsigned char *out,

unsigned long *outlen);

This function assumes the message to be PSS encoded has previously been hashed. The input
hash msghash is of length msghashlen. PSS allows a variable length random salt (it can be zero
length) to be introduced in the signature process. hash idx is the index into the hash descriptor
table of the hash to use. prng idx and prng are the random number generator information required
for the salt.

Similar to OAEP encoding modulus bitlen is the size of the RSA modulus (in bits). It limits
the size of the salt. If m is the length of the modulus h the length of the hash output (in octets)
then there can be m− h− 2 bytes of salt.

This function does not actually sign the data it merely pads the hash of a message so that it
can be processed by rsa exptmod().

10.4.2 PSS Decoding

To decode a PSS encoded signature block you have to use the following.

int pkcs_1_pss_decode(

const unsigned char *msghash,

unsigned long msghashlen,

const unsigned char *sig,

unsigned long siglen,

unsigned long saltlen,

int hash_idx,

unsigned long modulus_bitlen,

int *res);

This will decode the PSS encoded message in sig of length siglen and compare it to values in
msghash of length msghashlen. If the block is a valid PSS block and the decoded hash equals the
hash supplied res is set to non–zero. Otherwise, it is set to zero. The rest of the parameters are as
in the PSS encode call.

It’s important to use the same saltlen and hash for both encoding and decoding as otherwise
the procedure will not work.

10.5 RSA Key Operations

10.5.1 Background

RSA is a public key algorithm that is based on the inability to find the e-th root modulo a composite
of unknown factorization. Normally the difficulty of breaking RSA is associated with the integer
factoring problem but they are not strictly equivalent.
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The system begins with with two primes p and q and their product N = pq. The order or Euler
totient of the multiplicative sub-group formed modulo N is given as ϕ(N) = (p − 1)(q − 1) which
can be reduced to lcm(p− 1, q − 1). The public key consists of the composite N and some integer
e such that gcd(e, ϕ(N)) = 1. The private key consists of the composite N and the inverse of e
modulo ϕ(N) often simply denoted as de ≡ 1 (mod ϕ(N)).

A person who wants to encrypt with your public key simply forms an integer (the plaintext)
M such that 1 < M < N − 2 and computes the ciphertext C = Me (mod N). Since finding the
inverse exponent d given only N and e appears to be intractable only the owner of the private key
can decrypt the ciphertext and compute Cd ≡ (Me)

d ≡M1 ≡M (mod N). Similarly the owner of
the private key can sign a message by decrypting it. Others can verify it by encrypting it.

Currently RSA is a difficult system to cryptanalyze provided that both primes are large and not
close to each other. Ideally e should be larger than 100 to prevent direct analysis. For example, if e
is three and you do not pad the plaintext to be encrypted than it is possible that M3 < N in which
case finding the cube-root would be trivial. The most often suggested value for e is 65537 since
it is large enough to make such attacks impossible and also well designed for fast exponentiation
(requires 16 squarings and one multiplication).

It is important to pad the input to RSA since it has particular mathematical structure. For
instance Md

1M
d
2 = (M1M2)d which can be used to forge a signature. Suppose M3 = M1M2 is a

message you want to have a forged signature for. Simply get the signatures for M1 and M2 on
their own and multiply the result together. Similar tricks can be used to deduce plaintexts from
ciphertexts. It is important not only to sign the hash of documents only but also to pad the inputs
with data to remove such structure.

10.5.2 RSA Key Generation

For RSA routines a single rsa key structure is used. To make a new RSA key call:

int rsa_make_key(prng_state *prng,

int wprng,

int size,

long e,

rsa_key *key);

Where wprng is the index into the PRNG descriptor array. The size parameter is the size in
bytes of the RSA modulus desired. The e parameter is the encryption exponent desired, typical
values are 3, 17, 257 and 65537. Stick with 65537 since it is big enough to prevent trivial math
attacks, and not super slow. The key parameter is where the constructed key is placed. All keys
must be at least 128 bytes, and no more than 512 bytes in size (that is from 1024 to 4096 bits).

Note: the rsa make key() function allocates memory at run–time when you make the key. Make
sure to call rsa free() (see below) when you are finished with the key. If rsa make key() fails it will
automatically free the memory allocated.

There are two types of RSA keys. The types are PK PRIVATE and PK PUBLIC. The first
type is a private RSA key which includes the CRT parameters1 in the form of a RSAPrivateKey
(PKCS #1 compliant). The second type, is a public RSA key which only includes the modulus and
public exponent. It takes the form of a RSAPublicKey (PKCS #1 compliant).

1As of v0.99 the PK PRIVATE OPTIMIZED type has been deprecated, and has been replaced by the
PK PRIVATE type.
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10.5.3 RSA Exponentiation

To do raw work with the RSA function, that is without padding, use the following function:

int rsa_exptmod(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

int which,

rsa_key *key);

This will load the bignum from in as a big endian integer in the format PKCS #1 specifies, raises
it to either e or d and stores the result in out and the size of the result in outlen. which is set to
PK PUBLIC to use e (i.e. for encryption/verifying) and set to PK PRIVATE to use d as the
exponent (i.e. for decrypting/signing).

Note: the output of this function is zero–padded as per PKCS #1 specification. This allows
this routine to work with PKCS #1 padding functions properly.

10.5.4 RSA Key Size

To fetch the key size of an RSA key, use the following function:

int rsa_get_size(rsa_key *key);

This can be used to determine the modulus size of an RSA key.

10.6 RSA Key Encryption

Normally RSA is used to encrypt short symmetric keys which are then used in block ciphers to
encrypt a message. To facilitate encrypting short keys the following functions have been provided.

int rsa_encrypt_key(

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

const unsigned char *lparam,

unsigned long lparamlen,

prng_state *prng,

int prng_idx,

int hash_idx,

rsa_key *key);

This function will OAEP pad in of length inlen bytes, RSA encrypt it, and store the ciphertext in
out of length outlen octets. The lparam and lparamlen are the same parameters you would pass to
pkcs 1 oaep encode().
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10.6.1 Extended Encryption

As of v1.15, the library supports both v1.5 and v2.1 PKCS #1 style paddings in these higher level
functions. The following is the extended encryption function:

int rsa_encrypt_key_ex(

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

const unsigned char *lparam,

unsigned long lparamlen,

prng_state *prng,

int prng_idx,

int hash_idx,

int padding,

rsa_key *key);

The parameters are all the same as for rsa encrypt key() except for the addition of the padding
parameter. It must be set to LTC PKCS 1 V1 5 to perform v1.5 encryption, or set to LTC PKCS 1 OAEP
to perform v2.1 encryption.

When performing v1.5 encryption, the hash and lparam parameters are totally ignored and can
be set to NULL or zero (respectively).

10.7 RSA Key Decryption

int rsa_decrypt_key(

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

const unsigned char *lparam,

unsigned long lparamlen,

int hash_idx,

int *stat,

rsa_key *key);

This function will RSA decrypt in of length inlen then OAEP de-pad the resulting data and store
it in out of length outlen. The lparam and lparamlen are the same parameters you would pass to
pkcs 1 oaep decode().

If the RSA decrypted data is not a valid OAEP packet then stat is set to 0. Otherwise, it is set
to 1.

10.7.1 Extended Decryption

As of v1.15, the library supports both v1.5 and v2.1 PKCS #1 style paddings in these higher level
functions. The following is the extended decryption function:
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int rsa_decrypt_key_ex(

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

const unsigned char *lparam,

unsigned long lparamlen,

int hash_idx,

int padding,

int *stat,

rsa_key *key);

Similar to the extended encryption, the new parameter padding indicates which version of the
PKCS #1 standard to use. It must be set to LTC PKCS 1 V1 5 to perform v1.5 decryption, or
set to LTC PKCS 1 OAEP to perform v2.1 decryption.

When performing v1.5 decryption, the hash and lparam parameters are totally ignored and can
be set to NULL or zero (respectively).

10.8 RSA Signature Generation

Similar to RSA key encryption RSA is also used to digitally sign message digests (hashes). To
facilitate this process the following functions have been provided.

int rsa_sign_hash(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned long saltlen,

rsa_key *key);

This will PSS encode the message digest pointed to by in of length inlen octets. Next, the PSS
encoded hash will be RSA signed and the output stored in the buffer pointed to by out of length
outlen octets.

The hash idx parameter indicates which hash will be used to create the PSS encoding. It should
be the same as the hash used to hash the message being signed. The saltlen parameter indicates
the length of the desired salt, and should typically be small. A good default value is between 8 and
16 octets. Strictly, it must be small than modulus len− hLen− 2 where modulus len is the size of
the RSA modulus (in octets), and hLen is the length of the message digest produced by the chosen
hash.

10.8.1 Extended Signatures

As of v1.15, the library supports both v1.5 and v2.1 signatures. The extended signature generation
function has the following prototype:
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int rsa_sign_hash_ex(

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

int padding,

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned long saltlen,

rsa_key *key);

This will PKCS encode the message digest pointed to by in of length inlen octets. Next, the
PKCS encoded hash will be RSA signed and the output stored in the buffer pointed to by out of
length outlen octets. The padding parameter must be set to LTC PKCS 1 V1 5 to produce a
v1.5 signature, otherwise, it must be set to LTC PKCS 1 PSS to produce a v2.1 signature.

As of v1.18.0, the library also supports v1.5 signature generation without ASN.1 encoding the
signature which can be indicated by passing LTC PKCS 1 V1 5 NA1 as padding parameter.
This option has been introduced to provide compatibilty to SSL3.0 implementations which imple-
mented this.

When generating a standard v1.5 signature the prng, and prng idx parameters are ignored.
When generating a v1.5 signature without ASN.1 decoding additionally the textithash idx param-
eter is ignored.

10.9 RSA Signature Verification

int rsa_verify_hash(const unsigned char *sig,

unsigned long siglen,

const unsigned char *msghash,

unsigned long msghashlen,

int hash_idx,

unsigned long saltlen,

int *stat,

rsa_key *key);

This will RSA verify the signature pointed to by sig of length siglen octets. Next, the RSA
decoded data is PSS decoded and the extracted hash is compared against the message digest pointed
to by msghash of length msghashlen octets.

If the RSA decoded data is not a valid PSS message, or if the PSS decoded hash does not match
the msghash value, res is set to 0. Otherwise, if the function succeeds, and signature is valid res is
set to 1.

10.9.1 RSA Signature Salt Length

The v2.1 signature algorithm requires a salt length to be able to properly encode resp. decode. To
fetch the maximum possible salt length this function is provided:
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int rsa_sign_saltlen_get_max(int hash_idx, rsa_key *key);

As stated in the PKCS#1 RFC3447 ”Typical salt lengths in octets are hLen (the length of the
output of the hash function Hash) and 0”. This function is provided to be able to use other lengths
as well and to make sure at runtime that the RSA key can handle the desired salt length.

10.9.2 Extended Verification

As of v1.15, the library supports both v1.5 and v2.1 signature verification. The extended signature
verification function has the following prototype:

int rsa_verify_hash_ex(

const unsigned char *sig,

unsigned long siglen,

const unsigned char *hash,

unsigned long hashlen,

int padding,

int hash_idx,

unsigned long saltlen,

int *stat,

rsa_key *key);

This will RSA verify the signature pointed to by sig of length siglen octets. Next, the RSA
decoded data is PKCS decoded and the extracted hash is compared against the message digest
pointed to by msghash of length msghashlen octets.

If the RSA decoded data is not a valid PSS message, or if the PKCS decoded hash does not
match the msghash value, res is set to 0. Otherwise, if the function succeeds, and signature is valid
res is set to 1.

The padding parameter must be set to LTC PKCS 1 V1 5 to perform a v1.5 verification.
Otherwise, it must be set to LTC PKCS 1 PSS to perform a v2.1 verification.

As of v1.18.0, the library also supports v1.5 signature verification without ASN.1 decoding the
signature which can be indicated by passing LTC PKCS 1 V1 5 NA1 as padding parameter.

When performing a standard v1.5 verification the saltlen parameter is ignored. When performing
a v1.5 verification without ASN.1 decoding additionally the hash idx parameter is ignored.

10.10 RSA Encryption Example

#include <tomcrypt.h>

int main(void)

{

int err, hash_idx, prng_idx, res;

unsigned long l1, l2;

unsigned char pt[16], pt2[16], out[1024];

rsa_key key;

/* register prng/hash */

if (register_prng(&sprng_desc) == -1) {
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printf("Error registering sprng");

return EXIT_FAILURE;

}

/* register a math library (in this case TomsFastMath)

ltc_mp = tfm_desc;

if (register_hash(&sha1_desc) == -1) {

printf("Error registering sha1");

return EXIT_FAILURE;

}

hash_idx = find_hash("sha1");

prng_idx = find_prng("sprng");

/* make an RSA-1024 key */

if ((err = rsa_make_key(NULL, /* PRNG state */

prng_idx, /* PRNG idx */

1024/8, /* 1024-bit key */

65537, /* we like e=65537 */

&key) /* where to store the key */

) != CRYPT_OK) {

printf("rsa_make_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* fill in pt[] with a key we want to send ... */

l1 = sizeof(out);

if ((err = rsa_encrypt_key(pt, /* data we wish to encrypt */

16, /* data is 16 bytes long */

out, /* where to store ciphertext */

&l1, /* length of ciphertext */

"TestApp", /* our lparam for this program */

7, /* lparam is 7 bytes long */

NULL, /* PRNG state */

prng_idx, /* prng idx */

hash_idx, /* hash idx */

&key) /* our RSA key */

) != CRYPT_OK) {

printf("rsa_encrypt_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now let’s decrypt the encrypted key */

l2 = sizeof(pt2);

if ((err = rsa_decrypt_key(out, /* encrypted data */

l1, /* length of ciphertext */

pt2, /* where to put plaintext */

&l2, /* plaintext length */

"TestApp", /* lparam for this program */

7, /* lparam is 7 bytes long */
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hash_idx, /* hash idx */

&res, /* validity of data */

&key) /* our RSA key */

) != CRYPT_OK) {

printf("rsa_decrypt_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* if all went well pt == pt2, l2 == 16, res == 1 */

}

10.11 RSA Key Format

The RSA key format adopted for exporting and importing keys is the PKCS #1 format defined by
the ASN.1 constructs known as RSAPublicKey and RSAPrivateKey. Additionally, the OpenSSL
key format is supported as well.

10.11.1 RSA Key Export

To export a RSA key use the following function.

int rsa_export(unsigned char *out,

unsigned long *outlen,

int type,

rsa_key *key);

This will export the RSA key depending on the value of type.
The RSAPublicKey (PKCS #1 type) format will be used for the public key, indicated by

PK PUBLIC. The RSAPrivateKey (PKCS #1 type) format will be used for the private key,
indicated by PK PRIVATE.

As of v1.18.0 this function can also export OpenSSL-compatible formatted public RSA keys. By
OR’ing PK STD and PK PUBLIC the public key will be exported in the SubjectPublicKeyInfo
(X.509 type) format.

10.11.2 RSA Key Import

To import a RSA key use one of the following function.

Import from standard formats

This will import the key stored in in of length inlen and import it to key.
These formats are normally distributed in the PEM format, consisting of a label defining the

content and base64 encoded DER-serialized data.
All the import functions expect binary DER data.

int rsa_import(const unsigned char *in,

unsigned long inlen,

rsa_key *key);
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This function can import both RSAPublicKey and RSAPrivateKey formats.
As of v1.06 this function can also import OpenSSL DER formatted public RSA keys. They are

essentially encapsulated RSAPublicKeys. LibTomCrypt will import the key, strip off the additional
data and fill in the rsa key structure.

int rsa_import_pkcs8(const unsigned char *in,

unsigned long inlen,

const void *passwd,

unsigned long passwdlen,

rsa_key *key);

This function can import RSA private keys serialized in PKCS#8 format.
It provides a password parameter for the encrypted PKCS#8 format, but this functionality is

currently NOT implemented.

int rsa_import_x509(const unsigned char *in,

unsigned long inlen,

rsa_key *key);

This function can import the RSA public key from a X.509 certificate.

Import from plain big numbers

int rsa_set_key(const unsigned char *N,

unsigned long Nlen,

const unsigned char *e,

unsigned long elen,

const unsigned char *d,

unsigned long dlen,

rsa_key *key);

This function can import the plain RSA key parameters N, e and d. The parameter d is optional
and only required when importing a private key.

int rsa_set_factors(const unsigned char *p,

unsigned long plen,

const unsigned char *q,

unsigned long qlen,

rsa_key *key);

This function can import the plain RSA key factors p and q.

int rsa_set_crt_params(const unsigned char *dP,

unsigned long dPlen,

const unsigned char *dQ,

unsigned long dQlen,

const unsigned char *qP,

unsigned long qPlen,

rsa_key *key);
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This function can import the plain RSA CRT (chinese remainder theorem) parameters dP, dQ
and qP.

After importing p, q, dP, dQ and qP the library can perfrom the optimized CRT calculations
on private key operations.



Chapter 11

Diffie-Hellman Key Exchange

11.1 Background

Diffie-Hellman was the original public key system proposed. The system is based upon the group
structure of finite fields. For Diffie-Hellman a prime p is chosen and a “base” b such that bx (mod p)
generates a large sub-group of prime order (for unique values of x).

A secret key is an exponent x and a public key is the value of y ≡ gx (mod p). The term
“discrete logarithm” denotes the action of finding x given only y, g and p. The key exchange part
of Diffie-Hellman arises from the fact that two users A and B with keys (Ax, Ay) and (Bx, By) can
exchange a shared key K ≡ BAx

y ≡ ABx
y ≡ gAxBx (mod p).

From this public encryption and signatures can be developed. The trivial way to encrypt (for
example) using a public key y is to perform the key exchange offline. The sender invents a key k
and its public copy k′ ≡ gk (mod p) and uses K ≡ k′Ax (mod p) as a key to encrypt the message
with. Typically K would be sent to a one-way hash and the message digested used as a key in a
symmetric cipher.

It is important that the order of the sub-group that g generates not only be large but also
prime. There are discrete logarithm algorithms that take

√
r time given the order r. The discrete

logarithm can be computed modulo each prime factor of r and the results combined using the
Chinese Remainder Theorem. In the cases where r is “B-Smooth” (e.g. all small factors or powers
of small prime factors) the solution is trivial to find.

To thwart such attacks the primes and bases in the library have been designed and fixed. Given
a prime p the order of the sub-group generated is a large prime namely p−1

2 . Such primes are known
as “strong primes” and the smaller prime (e.g. the order of the base) are known as Sophie-Germaine
primes.

11.2 Core Functions

This library also provides core Diffie-Hellman functions so you can negotiate keys over insecure
mediums. The routines provided are relatively easy to use and only take two function calls to
negotiate a shared key. There is a structure called “dh key” which stores the Diffie-Hellman key in
a format these routines can use. The first set of routines are to make a Diffie-Hellman private key

101
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pair:

int dh_set_pg_groupsize(int groupsize, dh_key *key);

int dh_generate_key(prng_state *prng, int wprng, dh_key *key);

The “groupsize” is the size of the modulus you want in bytes. Currently support sizes are 96 to
1024 bytes which correspond to key sizes of 768 to 8192 bits. The smaller the key the faster it is to
use however it will be less secure. When specifying a size not explicitly supported by the library it
will round up to the next key size. If the size is above 512 it will return an error. So if you pass
“groupsize == 32” it will use a 768 bit key but if you pass “groupsize == 20000” it will return an
error. The primes and generators used are built-into the library and were designed to meet very
specific goals. The primes are strong primes which means that if p is the prime then p− 1 is equal
to 2r where r is a large prime. The bases are chosen to generate a group of order r to prevent
leaking a bit of the key. This means the bases generate a very large prime order group which is
good to make cryptanalysis hard.

The next two routines are for exporting/importing Diffie-Hellman keys in/from DER encoded
ASN.1. This is useful for transport over communication mediums.

int dh_export(unsigned char *out, unsigned long *outlen,

int type, dh_key *key);

int dh_import(const unsigned char *in, unsigned long inlen, dh_key *key);

The ASN.1 sequence used to represent a DH key is as following:

DiffieHellmanKey ::= SEQUENCE {

version Version,

flags Flags,

p INTEGER, -- prime

g INTEGER, -- base/group

n INTEGER -- either x when private key or y when public key }

Version ::= INTEGER { v1(0) }

Flags ::= BIT STRING {

privateKey (0) -- this BIT is ’1’ if it’s a private key

-- or ’0’ if it’s a public key

}

These two functions work just like the “rsa export()” and “rsa import()” functions except these
work with Diffie-Hellman keys. Its important to note you do not have to free the ram for a “dh key”
if an import fails.

You can free a “dh key” using:

void dh_free(dh_key *key);

After you have exported a copy of your public key (using PK PUBLIC as “type”) you can now
create a shared secret with the other user using:
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int dh_shared_secret(dh_key *private_key,

dh_key *public_key,

unsigned char *out, unsigned long *outlen);

Where “private key” is the key you made and “public key” is the copy of the public key the
other user sent you. The result goes into “out” and the length into “outlen”. If all went correctly
the data in “out” should be identical for both parties. It is important to note that the two keys
have to be the same size in order for this to work. There is a function to get the size of a key:

int dh_get_groupsize(dh_key *key);

This returns the size in bytes of the modulus chosen for that key.

11.3 Other Diffie-Hellman Functions

To be able to import Diffie-Hellman keys LibTomCrypt provides several API functions.

To import the prime and group from binary format:

int dh_set_pg(const unsigned char *p, unsigned long plen,

const unsigned char *g, unsigned long glen,

dh_key *key);

This sets the prime p of length plen and the generator/base g of length glen in the DH key key.

To import the prime and group from an ASN.1 encoded DHparam Sequence:

int dh_set_pg_dhparam(const unsigned char *dhparam, unsigned long dhparamlen, dh_key *key);

This sets the parameters in dhparam of dhparamlen in the DH key key.

To import a private or public key from binary data:

int dh_set_key(const unsigned char *in, unsigned long inlen, int type, dh_key *key);

This will import, depending on type which can be either PK PRIVATE or PK PUBLIC, the ac-
cording part of the DH key key from in of length inlen. After import the key will be verified and
in case of an error it will be free’d.

11.4 Remarks on Usage

Its important that you hash the shared key before trying to use it as a key for a symmetric cipher
or something. An example program that communicates over sockets, using MD5 and 1024-bit DH
keys is1:

1This function is a small example. It is suggested that proper packaging be used. For example, if the public key
sent is truncated these routines will not detect that.
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int establish_secure_socket(int sock, int mode, unsigned char *key,

prng_state *prng, int wprng)

{

unsigned char buf[4096], buf2[4096];

unsigned long x, len;

int res, err, inlen;

dh_key mykey, theirkey;

/* make up our private key */

if ((err = dh_set_pg_groupsize(128, &mykey)) != CRYPT_OK) {

return err;

}

if ((err = dh_generate_key(prng, wprng, &mykey)) != CRYPT_OK) {

return err;

}

/* export our key as public */

x = sizeof(buf);

if ((err = dh_export(buf, &x, PK_PUBLIC, &mykey)) != CRYPT_OK) {

res = err;

goto done2;

}

if (mode == 0) {

/* mode 0 so we send first */

if (send(sock, buf, x, 0) != x) {

res = CRYPT_ERROR;

goto done2;

}

/* get their key */

if ((inlen = recv(sock, buf2, sizeof(buf2), 0)) <= 0) {

res = CRYPT_ERROR;

goto done2;

}

} else {

/* mode >0 so we send second */

if ((inlen = recv(sock, buf2, sizeof(buf2), 0)) <= 0) {

res = CRYPT_ERROR;

goto done2;

}

if (send(sock, buf, x, 0) != x) {

res = CRYPT_ERROR;

goto done2;

}

}

if ((err = dh_import(buf2, inlen, &theirkey)) != CRYPT_OK) {

res = err;
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goto done2;

}

/* make shared secret */

x = sizeof(buf);

if ((err = dh_shared_secret(&mykey, &theirkey, buf, &x)) != CRYPT_OK) {

res = err;

goto done;

}

/* hash it */

len = 16; /* default is MD5 so "key" must be at least 16 bytes long */

if ((err = hash_memory(find_hash("md5"), buf, x, key, &len)) != CRYPT_OK) {

res = err;

goto done;

}

/* clean up and return */

res = CRYPT_OK;

done:

dh_free(&theirkey);

done2:

dh_free(&mykey);

zeromem(buf, sizeof(buf));

zeromem(buf2, sizeof(buf2));

return res;

}

11.4.1 Remarks on The Snippet

When the above code snippet is done (assuming all went well) there will be a shared 128-bit key in
the “key” array passed to “establish secure socket()”.
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Chapter 12

Elliptic Curve Cryptography

12.1 Background

The library provides a set of core ECC functions as well that are designed to be the Elliptic Curve
analogy of all of the Diffie-Hellman routines in the previous chapter. Elliptic curves (of certain
forms) have the benefit that they are harder to attack (no sub-exponential attacks exist unlike
normal DH crypto) in fact the fastest attack requires the square root of the order of the base point
in time. That means if you use a base point of order 2192 (which would represent a 192-bit key)
then the work factor is 296 in order to find the secret key.

The curves in this library are taken from the following website:

http://csrc.nist.gov/cryptval/dss.htm

As of v1.15 three new curves from the SECG standards are also included they are the secp112r1,
secp128r1, and secp160r1 curves. These curves were added to support smaller devices which do not
need as large keys for security.

They are all curves over the integers modulo a prime. The curves have the basic equation that
is:

y2 = x3 − 3x+ b (mod p) (12.1)

The variable b is chosen such that the number of points is nearly maximal. In fact the order
of the base points β provided are very close to p that is ||ϕ(β)||∼||p||. The curves range in order
from ∼2112 points to ∼2521. According to the source document any key size greater than or equal
to 256-bits is sufficient for long term security.

12.2 Fixed Point Optimizations

As of v1.12 of LibTomCrypt, support for Fixed Point ECC point multiplication has been added.
It is a generic optimization that is supported by any conforming math plugin. It is enabled by
defining MECC FP during the build, such as

CFLAGS="-DTFM_DESC -DMECC_FP" make
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which will build LTC using the TFM math library and enabling this new feature. The feature is
not enabled by default as it is NOT thread safe (by default). It supports the LTC locking macros
(such as by enabling LTC PTHREAD), but by default is not locked.

The optimization works by using a Fixed Point multiplier on any base point you use twice or
more in a short period of time. It has a limited size cache (of FP ENTRIES entries) which it uses to
hold recent bases passed to ltc ecc mulmod(). Any base detected to be used twice is sent through
the pre–computation phase, and then the fixed point algorithm can be used. For example, if you
use a NIST base point twice in a row, the 2nd and all subsequent point multiplications with that
point will use the faster algorithm.

The optimization uses a window on the multiplicand of FP LUT bits (default: 8, min: 2, max:
12), and this controls the memory/time trade-off. The larger the value the faster the algorithm
will be but the more memory it will take. The memory usage is 3 · 2FP LUT integers which by
default with TFM amounts to about 400kB of memory. Tuning TFM (by changing FP SIZE) can
decrease the usage by a fair amount. Memory is only used by a cache entry if it is active. Both
FP ENTRIES and FP LUT are definable on the command line if you wish to override them. For
instance,

CFLAGS="-DTFM_DESC -DMECC_FP -DFP_ENTRIES=8 -DFP_LUT=6" make

would define a window of 6 bits and limit the cache to 8 entries. Generally, it is better to first
tune TFM by adjusting FP SIZE (from tfm.h). It defaults to 4096 bits (512 bytes) which is way
more than what is required by ECC. At most, you need 1152 bits to accommodate ECC–521. If
you’re only using (say) ECC–256 you will only need 576 bits, which would reduce the memory
usage by 700%.

12.3 Key Format

LibTomCrypt uses a unique format for ECC public and private keys. While ANSI X9.63 partially
specifies key formats, it does it in a less than ideally simple manner. In the case of LibTomCrypt,
it is meant solely for NIST and SECG GF (p) curves. The format of the keys is as follows:

ECCPublicKey ::= SEQUENCE {

flags BIT STRING(0), -- public/private flag (always zero),

keySize INTEGER, -- Curve size (in bits) divided by eight

-- and rounded down, e.g. 521 => 65

pubkey.x INTEGER, -- The X co-ordinate of the public key point

pubkey.y INTEGER, -- The Y co-ordinate of the public key point

}

ECCPrivateKey ::= SEQUENCE {

flags BIT STRING(1), -- public/private flag (always one),

keySize INTEGER, -- Curve size (in bits) divided by eight

-- and rounded down, e.g. 521 => 65

pubkey.x INTEGER, -- The X co-ordinate of the public key point

pubkey.y INTEGER, -- The Y co-ordinate of the public key point

secret.k INTEGER, -- The secret key scalar

}

The first flags bit denotes whether the key is public (zero) or private (one).
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12.4 ECC Curve Parameters

The library uses the following structure to describe an elliptic curve. This is used internally, as well
as by the new extended ECC functions which allow the user to specify their own curves.

/** Structure defines a NIST GF(p) curve */

typedef struct {

/** The size of the curve in octets */

int size;

/** name of curve */

char *name;

/** The prime that defines the field (encoded in hex) */

char *prime;

/** The fields B param (hex) */

char *B;

/** The order of the curve (hex) */

char *order;

/** The x co-ordinate of the base point on the curve (hex) */

char *Gx;

/** The y co-ordinate of the base point on the curve (hex) */

char *Gy;

} ltc_ecc_set_type;

The curve must be of the form y2 = x3 − 3x+ b, and all of the integer parameters are encoded
in hexadecimal format.

12.5 Core Functions

12.5.1 ECC Key Generation

There is a key structure called ecc key used by the ECC functions. There is a function to make a
key:

int ecc_make_key(prng_state *prng,

int wprng,

int keysize,

ecc_key *key);

The keysize is the size of the modulus in bytes desired. Currently directly supported values are
12, 16, 20, 24, 28, 32, 48, and 65 bytes which correspond to key sizes of 112, 128, 160, 192, 224,
256, 384, and 521 bits respectively. If you pass a key size that is between any key size it will round
the keysize up to the next available one.

The function will free any internally allocated resources if there is an error.
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12.5.2 Extended Key Generation

As of v1.16, the library supports an extended key generation routine which allows the user to specify
their own curve. It is specified as follows:

int ecc_make_key_ex(

prng_state *prng,

int wprng,

ecc_key *key,

const ltc_ecc_set_type *dp);

This function generates a random ECC key over the curve specified by the parameters by dp.
The rest of the parameters are equivalent to those from the original key generation function.

12.5.3 ECC Key Free

To free the memory allocated by a ecc make key(), ecc make key ex(), ecc import(), or ecc import ex()
call use the following function:

void ecc_free(ecc_key *key);

12.5.4 ECC Key Export

To export an ECC key using the LibTomCrypt format call the following function:

int ecc_export(unsigned char *out,

unsigned long *outlen,

int type,

ecc_key *key);

This will export the key with the given type (PK PUBLIC or PK PRIVATE), and store it to
out.

12.5.5 ECC Key Import

The following function imports a LibTomCrypt format ECC key:

int ecc_import(const unsigned char *in,

unsigned long inlen,

ecc_key *key);

This will import the ECC key from in, and store it in the ecc key structure pointed to by key. If
the operation fails it will free any allocated memory automatically.

12.5.6 Extended Key Import

The following function imports a LibTomCrypt format ECC key using a specified set of curve
parameters:
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int ecc_import_ex(const unsigned char *in,

unsigned long inlen,

ecc_key *key,

const ltc_ecc_set_type *dp);

This will import the key from the array pointed to by in of length inlen octets. The key is stored
in the ECC structure pointed to by key. The curve is specified by the parameters pointed to by dp.
The function will free all internally allocated memory upon error.

12.5.7 ANSI X9.63 Export

The following function exports an ECC public key in the ANSI X9.63 format:

int ecc_ansi_x963_export( ecc_key *key,

unsigned char *out,

unsigned long *outlen);

The ECC key pointed to by key is exported in public fashion to the array pointed to by out. The
ANSI X9.63 format used is from section 4.3.6 of the standard. It does not allow for the export of
private keys.

12.5.8 ANSI X9.63 Import

The following function imports an ANSI X9.63 section 4.3.6 format public ECC key:

int ecc_ansi_x963_import(const unsigned char *in,

unsigned long inlen,

ecc_key *key);

This will import the key stored in the array pointed to by in of length inlen octets. The imported
key is stored in the ECC key pointed to by key. The function will free any allocated memory upon
error.

12.5.9 Extended ANSI X9.63 Import

The following function allows the importing of an ANSI x9.63 section 4.3.6 format public ECC key
using user specified domain parameters:

int ecc_ansi_x963_import_ex(const unsigned char *in,

unsigned long inlen,

ecc_key *key,

ltc_ecc_set_type *dp);

This will import the key stored in the array pointed to by in of length inlen octets using the domain
parameters pointed to by dp. The imported key is stored in the ECC key pointed to by key. The
function will free any allocated memory upon error.
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12.5.10 ECC Shared Secret

To construct a Diffie-Hellman shared secret with a private and public ECC key, use the following
function:

int ecc_shared_secret( ecc_key *private_key,

ecc_key *public_key,

unsigned char *out,

unsigned long *outlen);

The private key is typically the local private key, and public key is the key the remote party has
shared. Note: this function stores only the x co-ordinate of the shared elliptic point as described
in ANSI X9.63 ECC–DH.

12.6 ECC Diffie-Hellman Encryption

ECC–DH Encryption is performed by producing a random key, hashing it, and XOR’ing the digest
against the plaintext. It is not strictly ANSI X9.63 compliant but it is very similar. It has been
extended by using an ASN.1 sequence and hash object identifiers to allow portable usage. The
following function encrypts a short string (no longer than the message digest) using this technique:

12.6.1 ECC-DH Encryption

int ecc_encrypt_key(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

int hash,

ecc_key *key);

As the name implies this function encrypts a (symmetric) key, and is not intended for encrypting
long messages directly. It will encrypt the plaintext in the array pointed to by in of length inlen
octets. It uses the public ECC key pointed to by key, and hash algorithm indexed by hash to
construct a shared secret which may be XOR’ed against the plaintext. The ciphertext is stored in
the output buffer pointed to by out of length outlen octets.

The data is encrypted to the public ECC key such that only the holder of the private key can
decrypt the payload. To have multiple recipients multiple call to this function for each public ECC
key is required.

12.6.2 ECC-DH Decryption

int ecc_decrypt_key(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

ecc_key *key);
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This function will decrypt an encrypted payload. The key provided must be the private key
corresponding to the public key used during encryption. If the wrong key is provided the function
will not specifically return an error code. It is important to use some form of challenge response in
that case (e.g. compute a MAC of a known string).

12.6.3 ECC Encryption Format

The packet format for the encrypted keys is the following ASN.1 SEQUENCE:

ECCEncrypt ::= SEQUENCE {

hashID OBJECT IDENTIFIER, -- OID of hash used

pubkey OCTET STRING , -- Encapsulated ECCPublicKey

skey OCTET STRING -- xor of plaintext and

--"hash of shared secret"

}

12.7 EC DSA Signatures

There are also functions to sign and verify messages. They use the ANSI X9.62 EC-DSA algorithm
to generate and verify signatures in the ANSI X9.62 format.

12.7.1 EC-DSA Signature Generation

To sign a message digest (hash) use the following function:

int ecc_sign_hash(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

ecc_key *key);

This function will EC–DSA sign the message digest stored in the array pointed to by in of length
inlen octets. The signature will be stored in the array pointed to by out of length outlen octets.
The function requires a properly seeded PRNG, and the ECC key provided must be a private key.

int ecc_sign_hash_rfc7518(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

ecc_key *key);

This function creates the same EC–DSA signature as ecc sign hash only the output format is
different. The format follows https://tools.ietf.org/html/rfc7518#section-3.4, sometimes
it is also called plain signature.

https://tools.ietf.org/html/rfc7518#section-3.4
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12.7.2 EC-DSA Signature Verification

int ecc_verify_hash(const unsigned char *sig,

unsigned long siglen,

const unsigned char *hash,

unsigned long hashlen,

int *stat,

ecc_key *key);

This function will verify the EC-DSA signature in the array pointed to by sig of length siglen
octets, against the message digest pointed to by the array hash of length hashlen. It will store a
non–zero value in stat if the signature is valid. Note: the function will not return an error if the
signature is invalid. It will return an error, if the actual signature payload is an invalid format. The
ECC key must be the public (or private) ECC key corresponding to the key that performed the
signature. The function ecc verify hash implements signature format according to X9.62 EC–DSA,
and the output is compliant for GF(p) curves.

int ecc_verify_hash_rfc7518(const unsigned char *sig,

unsigned long siglen,

const unsigned char *hash,

unsigned long hashlen,

int *stat,

ecc_key *key);

This function validate the EC–DSA signature as ecc verify hash only the signature input format
follows https://tools.ietf.org/html/rfc7518#section-3.4.

12.8 ECC Keysizes

With ECC if you try to sign a hash that is bigger than your ECC key you can run into problems.
The math will still work, and in effect the signature will still work. With ECC keys the strength
of the signature is limited by the size of the hash, or the size of they key, whichever is smaller. For
example, if you sign with SHA256 and an ECC-192 key, you in effect have 96–bits of security.

The library will not warn you if you make this mistake, so it is important to check yourself
before using the signatures.

https://tools.ietf.org/html/rfc7518#section-3.4
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Digital Signature Algorithm

13.1 Introduction

The Digital Signature Algorithm (or DSA) is a variant of the ElGamal Signature scheme which has
been modified to reduce the bandwidth of the signatures. For example, to have 80-bits of security
with ElGamal, you need a group with an order of at least 1024–bits. With DSA, you need a group
of order at least 160–bits. By comparison, the ElGamal signature would require at least 256 bytes
of storage, whereas the DSA signature would require only at least 40 bytes.

13.2 Key Format

Since no useful public standard for DSA key storage was presented to me during the course of
this development I made my own ASN.1 SEQUENCE which I document now so that others can
interoperate with this library.

DSAPublicKey ::= SEQUENCE {

publicFlags BIT STRING(0), -- must be 0

g INTEGER , -- base generator

-- check that g^q mod p == 1

-- and that 1 < g < p - 1

p INTEGER , -- prime modulus

q INTEGER , -- order of sub-group

-- (must be prime)

y INTEGER , -- public key, specifically,

-- g^x mod p,

-- check that y^q mod p == 1

-- and that 1 < y < p - 1

}

DSAPrivateKey ::= SEQUENCE {

publicFlags BIT STRING(1), -- must be 1

g INTEGER , -- base generator
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-- check that g^q mod p == 1

-- and that 1 < g < p - 1

p INTEGER , -- prime modulus

q INTEGER , -- order of sub-group

-- (must be prime)

y INTEGER , -- public key, specifically,

-- g^x mod p,

-- check that y^q mod p == 1

-- and that 1 < y < p - 1

x INTEGER -- private key

}

The leading BIT STRING has a single bit in it which is zero for public keys and one for private
keys. This makes the structure uniquely decodable, and easy to work with.

13.3 Key Generation

To make a DSA key you must call the following function

int dsa_make_key(prng_state *prng,

int wprng,

int group_size,

int modulus_size,

dsa_key *key);

The variable prng is an active PRNG state and wprng the index to the descriptor. group size and
modulus size control the difficulty of forging a signature. Both parameters are in bytes. The larger
the group size the more difficult a forgery becomes upto a limit. The value of group size is limited
by 15 < group size < 1024 and modulus size − group size < 512. Suggested values for the pairs
are as follows.

Bits of Security group size modulus size
80 20 128
120 30 256
140 35 384
160 40 512

Figure 13.1: DSA Key Sizes

When you are finished with a DSA key you can call the following function to free the memory
used.

void dsa_free(dsa_key *key);

13.4 Key Verification

Each DSA key is composed of the following variables.
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1. q a small prime of magnitude 256group size.

2. p = qr + 1 a large prime of magnitude 256modulus size where r is a random even integer.

3. g = hr (mod p) a generator of order q modulo p. h can be any non-trivial random value. For
this library they start at h = 2 and step until g is not 1.

4. x a random secret (the secret key) in the range 1 < x < q

5. y = gx (mod p) the public key.

A DSA key is considered valid if it passes all of the following tests.

1. q must be prime.

2. p must be prime.

3. g cannot be one of {−1, 0, 1} (modulo p).

4. g must be less than p.

5. (p− 1) ≡ 0 (mod q).

6. gq ≡ 1 (mod p).

7. 1 < y < p− 1

8. yq ≡ 1 (mod p).

Tests one and two ensure that the values will at least form a field which is required for the
signatures to function. Tests three and four ensure that the generator g is not set to a trivial
value which would make signature forgery easier. Test five ensures that q divides the order of
multiplicative sub-group of Z/pZ. Test six ensures that the generator actually generates a prime
order group. Tests seven and eight ensure that the public key is within range and belongs to a
group of prime order. Note that test eight does not prove that g generated y only that y belongs
to a multiplicative sub-group of order q.

The following function will perform these tests.

int dsa_verify_key(dsa_key *key, int *stat);

This will test key and store the result in stat. If the result is stat = 0 the DSA key failed one
of the tests and should not be used at all. If the result is stat = 1 the DSA key is valid (as far as
valid mathematics are concerned).

13.5 Signatures

13.5.1 Signature Generation

To generate a DSA signature call the following function:
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int dsa_sign_hash(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

dsa_key *key);

Which will sign the data in in of length inlen bytes. The signature is stored in out and the size of
the signature in outlen. If the signature is longer than the size you initially specify in outlen nothing
is stored and the function returns an error code. The DSA key must be of the PK PRIVATE
persuasion.

13.5.2 Signature Verification

To verify a hash created with that function use the following function:

int dsa_verify_hash(const unsigned char *sig,

unsigned long siglen,

const unsigned char *hash,

unsigned long inlen,

int *stat,

dsa_key *key);

Which will verify the data in hash of length inlen against the signature stored in sig of length
siglen. It will set stat to 1 if the signature is valid, otherwise it sets stat to 0.

13.6 DSA Encrypt and Decrypt

As of version 1.07, the DSA keys can be used to encrypt and decrypt small payloads. It works
similar to the ECC encryption where a shared key is computed, and the hash of the shared key
XOR’ed against the plaintext forms the ciphertext. The format used is functional port of the ECC
encryption format to the DSA algorithm.

13.6.1 DSA Encryption

This function will encrypt a small payload with a recipients public DSA key.

int dsa_encrypt_key(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

int hash,

dsa_key *key);
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This will encrypt the payload in in of length inlen and store the ciphertext in the output buffer
out. The length of the ciphertext outlen must be originally set to the length of the output buffer.
The DSA key can be a public key.

13.6.2 DSA Decryption

int dsa_decrypt_key(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

dsa_key *key);

This will decrypt the ciphertext in of length inlen, and store the original payload in out of length
outlen. The DSA key must be a private key.

13.7 DSA Key Import and Export

13.7.1 DSA Key Export

To export a DSA key so that it can be transported use the following function:

int dsa_export(unsigned char *out,

unsigned long *outlen,

int type,

dsa_key *key);

This will export the DSA key to the buffer out and set the length in outlen (which must have been
previously initialized to the maximum buffer size). The type variable may be either PK PRIVATE
or PK PUBLIC depending on whether you want to export a private or public copy of the DSA
key.

13.7.2 DSA Key Import

To import an exported DSA key use the following function :

int dsa_import(const unsigned char *in,

unsigned long inlen,

dsa_key *key);

This will import the DSA key from the buffer in of length inlen to the key. If the process fails
the function will automatically free all of the heap allocated in the process (you don’t have to call
dsa free()).

13.8 Other DSA Functions

The following functions allow to create a DSA key in 2 steps:

1. Load or generate p, q, g part of the key via dsa set pqg(), dsa set pqg dsaparam() or dsa generate pqg().
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2. Load or generate the actual DSA key – private (x and y values) or public (y value).

int dsa_set_pqg(const unsigned char *p, unsigned long plen,

const unsigned char *q, unsigned long qlen,

const unsigned char *g, unsigned long glen,

dsa_key *key);

This will initialise the p, q and g part of key structure by directly loading binary representation
of p (with length of plen), q (with length of qlen) and g (with length of glen). A simple DSA key
validity check (without primality testing) is performed at the end of this function.

int dsa_set_pqg_dsaparam(const unsigned char *dsaparam,

unsigned long dsaparamlen,

dsa_key *key);

This will initialise the p, q and g part of key structure by directly loading binary representation
of DSA parameters stored as a binary data in a buffer dsaparam (with length of dsaparamlen). A
simple DSA key validity check (without primality testing) is performed at the end of this function.
The dsaparam can be generated via:

openssl dsaparam 2048 -outform DER -out dsaparam.der

int dsa_generate_pqg(prng_state *prng,

int wprng,

int group_size,

int modulus_size,

dsa_key *key);

This will initialise the p, q and g part of key structure with newly generated random values. As
for the parameters they are the same as by dsa make key.

int dsa_set_key(const unsigned char *in,

unsigned long inlen,

int type,

dsa_key *key);

This function can be used for setting the actual DSA key. If type is PK PRIVATE then the
buffer in (with length of inlen) contains a binary representation of x part of the key (the public
part y is computed). If type is PK PUBLIC then the buffer in contains a binary representation of
y part of the key.

int dsa_generate_key(prng_state *prng,

int wprng,

dsa_key *key);

This function generates a private DSA key containing both x and y parts.
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Standards Support

14.1 ASN.1 Formats

LibTomCrypt supports a variety of ASN.1 data types encoded with the Distinguished Encoding
Rules (DER) suitable for various cryptographic protocols. The data types are all provided with
three basic functions with similar prototypes. One function has been dedicated to calculate the
length in octets of a given format, and two functions have been dedicated to encoding and decoding
the format.

On top of the basic data types are the SEQUENCE and SET data types which are collections
of other ASN.1 types. They are provided in the same manner as the other data types except they
use list of objects known as the ltc asn1 list structure. It is defined as the following:

typedef struct {

ltc_asn1_type type;

void *data;

unsigned long size;

int used;

int optional;

ltc_asn1_class klass;

ltc_asn1_pc pc;

ulong64 tag;

struct ltc_asn1_list_ *prev, *next,

*child, *parent;

} ltc_asn1_list;

The type field is one of the following ASN.1 field definitions. The data pointer is a void pointer
to the data to be encoded (or the destination) and the size field is specific to what you are encoding
(e.g. number of bits in the BIT STRING data type). The used field is primarily for the CHOICE
decoder and reflects if the particular member of a list was the decoded data type. To help build
the lists in an orderly fashion the macro LTC SET ASN1(list, index, Type, Data, Size) has been
provided.

It will assign to the index th position in the list the triplet (Type, Data, Size). An example
usage would be:

121
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...

ltc_asn1_list sequence[3];

unsigned long three=3;

LTC_SET_ASN1(sequence, 0, LTC_ASN1_IA5_STRING, "hello", 5);

LTC_SET_ASN1(sequence, 1, LTC_ASN1_SHORT_INTEGER, &three, 1);

LTC_SET_ASN1(sequence, 2, LTC_ASN1_NULL, NULL, 0);

The macro is relatively safe with respect to modifying variables, for instance the following code
is equivalent.

...

ltc_asn1_list sequence[3];

unsigned long three=3;

int x=0;

LTC_SET_ASN1(sequence, x++, LTC_ASN1_IA5_STRING, "hello", 5);

LTC_SET_ASN1(sequence, x++, LTC_ASN1_SHORT_INTEGER, &three, 1);

LTC_SET_ASN1(sequence, x++, LTC_ASN1_NULL, NULL, 0);

Definition ASN.1 Type

LTC ASN1 EOL End of a ASN.1 list structure.

LTC ASN1 BOOLEAN BOOLEAN type

LTC ASN1 INTEGER INTEGER (uses mp int)

LTC ASN1 SHORT INTEGER INTEGER (32–bit using unsigned long)

LTC ASN1 BIT STRING BIT STRING (one bit per char)

LTC ASN1 OCTET STRING OCTET STRING (one octet per char)

LTC ASN1 NULL NULL

LTC ASN1 OBJECT IDENTIFIER OBJECT IDENTIFIER

LTC ASN1 IA5 STRING IA5 STRING (one octet per char)

LTC ASN1 PRINTABLE STRING PRINTABLE STRING (one octet per char)

LTC ASN1 UTF8 STRING UTF8 STRING (one wchar t per char)

LTC ASN1 UTCTIME UTCTIME (see ltc utctime structure)

LTC ASN1 CHOICE CHOICE

LTC ASN1 SEQUENCE SEQUENCE (and SEQUENCE OF)

LTC ASN1 SET SET

LTC ASN1 SETOF SET OF

LTC ASN1 RAW BIT STRING BIT STRING (one octet per char)

LTC ASN1 TELETEX STRING TELETEX STRING (one octet per char)

LTC ASN1 GENERALIZEDTIME GeneralizedTime (see ltc generalizedtime structure)

LTC ASN1 CUSTOM TYPE A custom type (see LTC SET ASN1 CUSTOM XXX macros)

Figure 14.1: List of ASN.1 Supported Types

To be able to encode and decode all other valid ASN.1 Identifiers, such as Context-Specific
types the macros LTC SET ASN1 CUSTOM CONSTRUCTED(list, index, Class, Tag, Data) resp.
LTC SET ASN1 CUSTOM PRIMITIVE(list, index, Class, Tag, Type, Data, Size) have been pro-
vided.

They will assign to the index th position in the list the Identifier-triplet (Class, CONSTRUCTED
resp. PRIMITIVE, Tag). An example usage would be:
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...

ltc_asn1_list sequence[4], custom[1];

unsigned long three=3;

unsigned char buf[128];

LTC_SET_ASN1(sequence, 0, LTC_ASN1_IA5_STRING, "hello", 5);

LTC_SET_ASN1(sequence, 1, LTC_ASN1_SHORT_INTEGER, &three, 1);

LTC_SET_ASN1(sequence, 2, LTC_ASN1_NULL, NULL, 0);

LTC_SET_ASN1_CUSTOM_PRIMITIVE(sequence, 3, LTC_ASN1_CL_CONTEXT_SPECIFIC, 23, \

LTC_ASN1_OCTET_STRING, buf, sizeof(buf));

LTC_SET_ASN1_CUSTOM_CONSTRUCTED(custom, 0, LTC_ASN1_CL_CONTEXT_SPECIFIC, 0, sequence);

This would allow (un)pack’ing the given sequence from/in the context-specific tag [0].

14.1.1 SEQUENCE Type

The SEQUENCE data type is a collection of other ASN.1 data types encapsulated with a small
header which is a useful way of sending multiple data types in one packet.

SEQUENCE Encoding

To encode a sequence a ltc asn1 list array must be initialized with the members of the sequence
and their respective pointers. The encoding is performed with the following function.

int der_encode_sequence(ltc_asn1_list *list,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

This encodes a sequence of items pointed to by list where the list has inlen items in it. The
SEQUENCE will be encoded to out and of length outlen. The function will terminate when it
reads all the items out of the list (upto inlen) or it encounters an item in the list with a type of
LTC ASN1 EOL.

The data pointer in the list would be the same pointer you would pass to the respective ASN.1
encoder (e.g. der encode bit string()) and it is simply passed on verbatim to the dependent encoder.
The list can contain other SEQUENCE or SET types which enables you to have nested SEQUENCE
and SET definitions. In these cases the data pointer is simply a pointer to another ltc asn1 list.

SEQUENCE Decoding

Decoding a SEQUENCE is similar to encoding. You set up an array of ltc asn1 list where in this
case the size member is the maximum size (in certain cases). For types such as IA5 STRING, BIT
STRING, OCTET STRING (etc) the size field is updated after successful decoding to reflect how
many units of the respective type has been loaded.

int der_decode_sequence(const unsigned char *in,

unsigned long inlen,

ltc_asn1_list *list,
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unsigned long outlen);

int der_decode_sequence_strict(const unsigned char *in,

unsigned long inlen,

ltc_asn1_list *list,

unsigned long outlen);

This will decode upto outlen items from the input buffer in of length inlen octets. The func-
tion will stop (gracefully) when it runs out of items to decode. It will fail (for among other
reasons) when it runs out of input bytes to read, a data type is invalid or a heap failure occurred.
The regular variant will return CRYPT INPUT TOO LONG in cases where there was more
data to be decoded given through inlen than the ASN.1 length-tag specified. The strict variant
der decode sequence strict() returns an error in this case.

For the following types the size field will be updated to reflect the number of units read of the
given type.

1. (RAW) BIT STRING

2. OCTET STRING

3. OBJECT IDENTIFIER

4. IA5 STRING

5. PRINTABLE STRING

6. TELETEX STRING

7. UTF8 STRING

SEQUENCE Length

The length of a SEQUENCE can be determined with the following function.

int der_length_sequence(ltc_asn1_list *list,

unsigned long inlen,

unsigned long *outlen);

This will get the encoding size for the given list of length inlen and store it in outlen.

SEQUENCE Multiple Argument Lists

For small or simple sequences an encoding or decoding can be performed with one of the following
two functions.

int der_encode_sequence_multi(unsigned char *out,

unsigned long *outlen, ...);

int der_decode_sequence_multi(const unsigned char *in,

unsigned long inlen, ...);
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These either encode or decode (respectively) a SEQUENCE data type where the items in the
sequence are specified after the length parameter.

The list of items are specified as a triple of the form (type, size, data) where type is an int, size
is a unsigned long and data is void pointer. The list of items must be terminated with an item
with the type LTC ASN1 EOL.

It is ideal that you cast the size values to unsigned long to ensure that the proper data type is
passed to the function. Constants such as 1 without a cast or prototype are of type int by default.
Appending UL or pre-pending (unsigned long) is enough to cast it to the correct type.

unsigned char buf[MAXBUFSIZE];

unsigned long buflen;

int err;

buflen = sizeof(buf);

if ((err =

der_encode_sequence_multi(buf, &buflen,

LTC_ASN1_IA5_STRING, 5UL, "Hello",

LTC_ASN1_IA5_STRING, 7UL, " World!",

LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) {

// error handling

}

This example encodes a SEQUENCE with two IA5 STRING types containing “Hello” and “
World!” respectively. Note the usage of the UL modifier on the size parameters. This forces the
compiler to pass the numbers as the required unsigned long type that the function expects.

14.1.2 SET and SET OF

SET and SET OF are related to the SEQUENCE type in that they can be pretty much be decoded
with the same code. However, they are different, and they should be carefully noted. The SET
type is an unordered array of ASN.1 types sorted by the TAG (type identifier), whereas the SET
OF type is an ordered array of a single ASN.1 object sorted in ascending order by the DER their
respective encodings.

SET Encoding

SETs use the same array structure of ltc asn1 list that the SEQUENCE functions use. They are
encoded with the following function:

int der_encode_set(ltc_asn1_list *list,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

This will encode the list of ASN.1 objects in list of length inlen objects, and store the output
in out of length outlen bytes. The function will make a copy of the list provided, and sort it by the
TAG. Objects with identical TAGs are additionally sorted on their original placement in the array
(to make the process deterministic).

This function will NOT recognize DEFAULT objects, and it is the responsibility of the caller
to remove them as required.



126 www.libtom.net

SET Decoding

The SET type can be decoded with the following function.

int der_decode_set(const unsigned char *in,

unsigned long inlen,

ltc_asn1_list *list,

unsigned long outlen);

This will decode the SET specified by list of length outlen objects from the input buffer in of
length inlen octets.

It handles the fact that SETs are not strictly ordered and will make multiple passes (as required)
through the list to decode all the objects.

SET Length

The length of a SET can be determined by calling der length sequence() since they have the same
encoding length.

SET OF Encoding

A SET OF object is an array of identical objects (e.g. OCTET STRING) sorted in ascending order
by the DER encoding of the object. They are used to store objects deterministically based solely
on their encoding. It uses the same array structure of ltc asn1 list that the SEQUENCE functions
use. They are encoded with the following function.

int der_encode_setof(ltc_asn1_list *list,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

This will encode a SET OF containing the list of inlen ASN.1 objects and store the encoding
in the output buffer out of length outlen.

The routine will first encode the SET OF in an unordered fashion (in a temporary buffer) then
sort using the XQSORT macro and copy back to the output buffer. This means you need at least
enough memory to keep an additional copy of the output on the heap.

SET OF Decoding

Since the decoding of a SET OF object is unambiguous it can be decoded with der decode sequence().

SET OF Length

Like the SET type the der length sequence() function can be used to determine the length of a SET
OF object.
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14.1.3 ASN.1 INTEGER

To encode or decode INTEGER data types use the following functions.

int der_encode_integer( void *num,

unsigned char *out,

unsigned long *outlen);

int der_decode_integer(const unsigned char *in,

unsigned long inlen,

void *num);

int der_length_integer( void *num,

unsigned long *len);

These will encode or decode a signed INTEGER data type using the bignum data type to store
the large INTEGER. To encode smaller values without allocating a bignum to store the value, the
short INTEGER functions were made available.

int der_encode_short_integer(unsigned long num,

unsigned char *out,

unsigned long *outlen);

int der_decode_short_integer(const unsigned char *in,

unsigned long inlen,

unsigned long *num);

int der_length_short_integer(unsigned long num,

unsigned long *outlen);

These will encode or decode an unsigned unsigned long type (only reads upto 32–bits). For
values in the range 0 . . . 232− 1 the integer and short integer functions can encode and decode each
others outputs.

14.1.4 ASN.1 BIT STRING

int der_encode_bit_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_bit_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_length_bit_string(unsigned long nbits,

unsigned long *outlen);
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These will encode or decode a BIT STRING data type. The bits are passed in (or read out)
using one char per bit. A non–zero value will be interpreted as a one bit, and a zero value a zero
bit.

14.1.5 ASN.1 RAW BIT STRING

int der_encode_raw_bit_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_raw_bit_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

These will encode or decode a BIT STRING data type. The bits are passed in (or read out)
using one unsigned char per 8 bit.

This function differs from the normal BIT STRING, as it can be used to directly process raw
binary data and store it to resp. read it from an ASN.1 BIT STRING data type.

The length function is the same as for the normal BIT STRING der length bit string().

14.1.6 ASN.1 OCTET STRING

int der_encode_octet_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_octet_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_length_octet_string(unsigned long noctets,

unsigned long *outlen);

These will encode or decode an OCTET STRING data type. The octets are stored using one
unsigned char each.

14.1.7 ASN.1 OBJECT IDENTIFIER

int der_encode_object_identifier(unsigned long *words,

unsigned long nwords,

unsigned char *out,

unsigned long *outlen);
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int der_decode_object_identifier(const unsigned char *in,

unsigned long inlen,

unsigned long *words,

unsigned long *outlen);

int der_length_object_identifier(unsigned long *words,

unsigned long nwords,

unsigned long *outlen);

These will encode or decode an OBJECT IDENTIFIER object. The words of the OID are
stored in individual unsigned long elements, and must be in the range 0 . . . 232 − 1.

14.1.8 ASN.1 IA5 STRING

int der_encode_ia5_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_ia5_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_length_ia5_string(const unsigned char *octets,

unsigned long noctets,

unsigned long *outlen);

These will encode or decode an IA5 STRING. The characters are read or stored in individual
char elements. These functions performs internal character to numerical conversions based on the
conventions of the compiler being used. For instance, on an x86 32 machine ’A’ == 65 but the
same may not be true on say a SPARC machine. Internally, these functions have a table of literal
characters and their numerical ASCII values. This provides a stable conversion provided that the
build platform honours the run–time platforms character conventions.

14.1.9 ASN.1 TELETEX STRING

int der_decode_teletex_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_length_teletex_string(const unsigned char *octets,

unsigned long noctets,

unsigned long *outlen);
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These will decode a TELETEX STRING. The characters are read in individual char elements.
The internal structure is similar to that of the IA5 STRING implementation, to be able to provide
a stable conversion independent of the build– and run–time platform.

14.1.10 ASN.1 PRINTABLE STRING

int der_encode_printable_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_printable_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_length_printable_string(const unsigned char *octets,

unsigned long noctets,

unsigned long *outlen);

These will encode or decode an PRINTABLE STRING. The characters are read or stored in
individual char elements. These functions performs internal character to numerical conversions
based on the conventions of the compiler being used. For instance, on an x86 32 machine ’A’ ==
65 but the same may not be true on say a SPARC machine. Internally, these functions have a table
of literal characters and their numerical ASCII values. This provides a stable conversion provided
that the build platform honours the run-time platforms character conventions.

14.1.11 ASN.1 UTF8 STRING

int der_encode_utf8_string(const wchar_t *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_utf8_string(const unsigned char *in,

unsigned long inlen,

wchar_t *out,

unsigned long *outlen);

int der_length_utf8_string(const wchar_t *octets,

unsigned long noctets,

unsigned long *outlen);

These will encode or decode an UTF8 STRING. The characters are read or stored in individual
wchar t elements. These function performs no internal mapping and treat the characters as literals.

These functions use the wchar t type which is not universally available. In those cases, the
library will typedef it to unsigned long. If you intend to use the ISO C functions for working with
wide–char arrays, you should make sure that wchar t has been defined previously.
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14.1.12 ASN.1 UTCTIME

The UTCTIME type is to store a date and time in ASN.1 format. It uses the following structure
to organize the time.

typedef struct {

unsigned YY, /* year 00--99 */

MM, /* month 01--12 */

DD, /* day 01--31 */

hh, /* hour 00--23 */

mm, /* minute 00--59 */

ss, /* second 00--59 */

off_dir, /* timezone offset direction 0 == +, 1 == - */

off_hh, /* timezone offset hours */

off_mm; /* timezone offset minutes */

} ltc_utctime;

The time can be offset plus or minus a set amount of hours (off hh) and minutes (off mm).
When off dir is zero, the time will be added otherwise it will be subtracted. For instance, the array
{5, 6, 20, 22, 4, 00, 0, 5, 0} represents the current time of 2005, June 20th, 22:04:00 with a time offset
of +05h00.

int der_encode_utctime( ltc_utctime *utctime,

unsigned char *out,

unsigned long *outlen);

int der_decode_utctime(const unsigned char *in,

unsigned long *inlen,

ltc_utctime *out);

int der_length_utctime( ltc_utctime *utctime,

unsigned long *outlen);

The encoder will store time in one of the two ASN.1 formats, either YYMMDDhhmmssZ or
YYMMDDhhmmss±hhmm, and perform minimal error checking on the input. The decoder will
read all valid ASN.1 formats and perform range checking on the values (not complete but rational)
useful for catching packet errors.

It is suggested that decoded data be further scrutinized (e.g. days of month in particular).

14.1.13 ASN.1 GeneralizedTime

The GeneralizedTime type is to store a date and time in ASN.1 format. It uses the following
structure to organize the time.

typedef struct {

unsigned YYYY, /* year 0--9999 */

MM, /* month 1--12 */

DD, /* day 1--31 */
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hh, /* hour 0--23 */

mm, /* minute 0--59 */

ss, /* second 0--59 */

fs, /* fractional seconds 1--UINT_MAX */

off_dir, /* timezone offset direction 0 == +, 1 == - */

off_hh, /* timezone offset hours */

off_mm; /* timezone offset minutes */

} ltc_generalizedtime;

The time can be offset plus or minus a set amount of hours (off hh) and minutes (off mm).
When off dir is zero, the time will be added otherwise it will be subtracted. For instance, the array
{2005, 6, 20, 22, 4, 0, 122, 0, 5, 0} represents the current time of 2005, June 20th, 22:04:00.122 with
a time offset of +05h00.

int der_encode_generalizedtime(ltc_generalizedtime *gtime,

unsigned char *out,

unsigned long *outlen);

int der_decode_generalizedtime(const unsigned char *in,

unsigned long *inlen,

ltc_generalizedtime *out);

int der_length_generalizedtime(ltc_generalizedtime *gtime,

unsigned long *outlen);

The encoder will store time in one of the following ASN.1 formats, either YYYYMMDDhhmmssZ
or YYYYMMDDhhmmss±hhmm orYYYYMMDDhhmmss.fsZ or YYYYMMDDhhmmss.fs±hhmm,
and perform minimal error checking on the input. The decoder will read all valid ASN.1 formats
and perform range checking on the values (not complete but rational) useful for catching packet
errors.

The fractional seconds are always added in case they are not 0. The implementation of frac-
tional seconds is currently unreliable and you can’t detect decoded resp. encode leading 0’s (e.g.
20170424232717.005Z would be decoded as 22. April 2017, 23:27:17.5 ).

It is suggested that decoded data be further scrutinized (e.g. days of month in particular).

14.1.14 ASN.1 CHOICE

The CHOICE ASN.1 type represents a union of ASN.1 types all of which are stored in a ltc asn1 list.
There is no encoder for the CHOICE type, only a decoder. The decoder will scan through the
provided list attempting to use the appropriate decoder on the input packet. The list can contain
any ASN.1 data type1 except for other CHOICE types.

There is no encoder for the CHOICE type as the actual DER encoding is the encoding of the
chosen type.

int der_decode_choice(const unsigned char *in,

unsigned long *inlen,

1Except it cannot have LTC ASN1 INTEGER and LTC ASN1 SHORT INTEGER simultaneously.
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ltc_asn1_list *list,

unsigned long outlen);

This will decode the input in the in field of length inlen. It uses the provided ASN.1 list specified
in the list field which has outlen elements. The inlen field will be updated with the length of the
decoded data type, as well as the respective entry in the list field will have the used flag set to
non–zero to reflect it was the data type decoded.

14.1.15 ASN.1 Custom Types

To be able to represent all other valid types besides the primitive types having their own decoder,
the custom type de- and encoders are provided.

int der_encode_custom_type(const ltc_asn1_list *root,

unsigned char *out, unsigned long *outlen);

int der_decode_custom_type(const unsigned char *in, unsigned long inlen,

ltc_asn1_list *root);

int der_length_custom_type(const ltc_asn1_list *root,

unsigned long *outlen,

unsigned long *payloadlen);

The usage of this de- and encoder is a bit different than the others since the type to be encoded
has to be passed to the function. Therefore the root parameter identifies the type that should
be encoded which has been set by the LTC SET ASN1 and LTC SET ASN1 IDENTIFIER, resp.
LTC SET ASN1 CUSTOM macros. The value to de-/encode has to be linked through the data
argument of the LTC SET ASN1 macro, as done for sequences. The value that should be de-
/encoded can either be a primitive or a constructed type.

14.1.16 ASN.1 Flexi Decoder

The ASN.1 flexi decoder allows the developer to decode arbitrary ASN.1 DER packets without first
knowing the structure of the data. Where der decode sequence() requires the developer to specify
the data types to decode in advance the flexi decoder is entirely free form.

The flexi decoder uses the same ltc asn1 list but instead of being stored in an array it uses the
linked list pointers prev, next, parent and child. The list works as a doubly-linked list structure
where decoded items at the same level are siblings (using next and prev) and items encoded in a
SEQUENCE are stored as a child element.

When a SEQUENCE or SET has been encountered a SEQUENCE (or SET resp.) item will be
added as a sibling (e.g. list.type == LTC ASN1 SEQUENCE) and the child pointer points to a
new list of items contained within the object.

int der_decode_sequence_flexi(const unsigned char *in,

unsigned long *inlen,

ltc_asn1_list **out);
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This will decode items in the in buffer of max input length inlen and store the newly created
pointer to the list in out. This function allocates all required memory for the decoding. It stores
the number of octets read back into inlen.

The function will terminate when either it hits an invalid ASN.1 tag, or it reads inlen octets.
An early termination is a soft error, and returns normally. The decoded list out will point to the
very first element of the list (i.e. both parent and prev pointers will be NULL).

An invalid decoding will terminate the process, and free the allocated memory automatically.
The flexi decoder calls itself when decoding a constructed type. This leads to a ’child process’

that will terminate when it decodes an unkown/invalid identifier and leaves an allocated but unini-
tialized child element. However the parent processing will continue with a ”soft-error”. This can
be detected by checking for child elements with type LTC ASN1 EOL after decoding.

The v1.18.0 of the library had support for decoding two new types, LTC ASN1 CONSTRUCTED
and LTC ASN1 CONTEXT SPECIFIC, which has been replaced in FIXME-version-next by
a more complete approach.

As of FIXME-version-next all ASN.1 Identifiers which don’t have a decoder implemented (and
thereby their own type) will be marked as LTC ASN1 CUSTOM TYPE.

Note: the list decoded by this function is NOT in the correct form for der encode sequence()
to use directly. You will first have to convert the list by first storing all of the siblings in an array
then storing all the children as sub-lists of a sequence using the .data pointer. Currently no function
in LibTomCrypt provides this ability.

Sample Decoding

Suppose we decode the following structure:

User ::= SEQUENCE {

Name IA5 STRING

LoginToken SEQUENCE {

passwdHash OCTET STRING

pubkey ECCPublicKey

}

LastOn UTCTIME

}

and we decoded it with the following code:

unsigned char inbuf[MAXSIZE];

unsigned long inbuflen;

ltc_asn1_list *list;

int err;

/* somehow fill inbuf/inbuflen */

if ((err = der_decode_sequence_flexi(inbuf, inbuflen, &list)) != CRYPT_OK) {

printf("Error decoding: %s\n", error_to_string(err));

exit(EXIT_FAILURE);

}

At this point list would point to the SEQUENCE identified by User. It would have no sibblings
(prev or next), and only a child node. Walking to the child node with the following code will bring
us to the Name portion of the SEQUENCE:
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list = list->child;

Now list points to the Name member (with the tag IA5 STRING). The data, size, and type members
of list should reflect that of an IA5 STRING. The sibbling will now be the LoginToken SEQUENCE.
The sibbling has a child node which points to the passwdHash OCTET STRING. We can walk to
this node with the following code:

/* list already pointing to ’Name’ */

list = list->next->child;

At this point, list will point to the passwdHash member of the innermost SEQUENCE. This node
has a sibbling, the pubkey member of the SEQUENCE. The LastOn member of the SEQUENCE
is a sibbling of the LoginToken node, if we wanted to walk there we would have to go up and over
via:

list = list->parent->next;

At this point, we are pointing to the last node of the list. Lists are terminated in all directions by a
NULL pointer. All nodes are doubly linked so that you can walk up and down the nodes without
keeping pointers lying around.

Shrink’ing a Flexi List

While decoding the flexi decoder will recursively decode an ASN.1 constructed type it will store the
decoded list as well as the plain data that was decoded. To free up this additional data a shrink
function is provided.

void der_sequence_shrink(ltc_asn1_list *in);

This will free all the plain constructed data, but keep the decoded list intact.

Free’ing a Flexi List

To free the list use the following function.

void der_sequence_free(ltc_asn1_list *in);

This will free all of the memory allocated by der decode sequence flexi().

14.2 Password Based Cryptography

14.2.1 PKCS #5

In order to securely handle user passwords for the purposes of creating session keys and chaining
IVs the PKCS #5 was drafted. PKCS #5 is made up of two algorithms, Algorithm One and
Algorithm Two. Algorithm One is the older fairly limited algorithm which has been implemented
for completeness. Algorithm Two is a bit more modern and more flexible to work with.

The OpenSSL project implemented an extension to Algorithm One that allows for arbitrary
keylengths; we have a compatible implementation described below.
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14.2.2 Algorithm One

Algorithm One accepts as input a password, an 8–byte salt, and an iteration counter. The iteration
counter is meant to act as delay for people trying to brute force guess the password. The higher the
iteration counter the longer the delay. This algorithm also requires a hash algorithm and produces
an output no longer than the output of the hash.

int pkcs_5_alg1(const unsigned char *password,

unsigned long password_len,

const unsigned char *salt,

int iteration_count,

int hash_idx,

unsigned char *out,

unsigned long *outlen)

Where password is the user’s password. Since the algorithm allows binary passwords you must also
specify the length in password len. The salt is a fixed size 8–byte array which should be random
for each user and session. The iteration count is the delay desired on the password. The hash idx
is the index of the hash you wish to use in the descriptor table.

The output of length up to outlen is stored in out. If outlen is initially larger than the size of
the hash functions output it is set to the number of bytes stored. If it is smaller than not all of the
hash output is stored in out.

int pkcs_5_alg1_openssl(const unsigned char *password,

unsigned long password_len,

const unsigned char *salt,

int iteration_count,

int hash_idx,

unsigned char *out,

unsigned long *outlen)

As above, but we generate as many bytes as requested in outlen per the OpenSSL extension to
Algorithm One. If you are trying to be compatible with OpenSSL’s EVP BytesToKey() or the
”openssl enc” command line (or variants such as perl’s Crypt::CBC), then use this function with
MD5 as your hash (ick!) and iteration count=1 (double-ick!!).

14.2.3 Algorithm Two

Algorithm Two is the recommended algorithm for this task. It allows variable length salts, and can
produce outputs larger than the hash functions output. As such, it can easily be used to derive
session keys for ciphers and MACs as well initialization vectors as required from a single password
and invocation of this algorithm.

int pkcs_5_alg2(const unsigned char *password,

unsigned long password_len,

const unsigned char *salt,

unsigned long salt_len,

int iteration_count,
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int hash_idx,

unsigned char *out,

unsigned long *outlen)

Where password is the users password. Since the algorithm allows binary passwords you must also
specify the length in password len. The salt is an array of size salt len. It should be random for
each user and session. The iteration count is the delay desired on the password. The hash idx is
the index of the hash you wish to use in the descriptor table. The output of length up to outlen is
stored in out.

/* demo to show how to make session state material

* from a password */

#include <tomcrypt.h>

int main(void)

{

unsigned char password[100], salt[100],

cipher_key[16], cipher_iv[16],

mac_key[16], outbuf[48];

int err, hash_idx;

unsigned long outlen, password_len, salt_len;

/* register hash and get it’s idx .... */

/* get users password and make up a salt ... */

/* create the material (100 iterations in algorithm) */

outlen = sizeof(outbuf);

if ((err = pkcs_5_alg2(password, password_len, salt,

salt_len, 100, hash_idx, outbuf,

&outlen))

!= CRYPT_OK) {

/* error handle */

}

/* now extract it */

memcpy(cipher_key, outbuf, 16);

memcpy(cipher_iv, outbuf+16, 16);

memcpy(mac_key, outbuf+32, 16);

/* use material (recall to store the salt in the output) */

}
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14.3 Key Derviation Functions

14.3.1 HKDF

A key derivation function (KDF) is a basic and essential component of cryptographic systems. Its
goal is to take some source of initial keying material and derive from it one or more cryptographically
strong secret keys.

HKDF follows the ”extract-then-expand” paradigm, where the KDF logically consists of two
modules. The first stage takes the input keying material and ”extracts” from it a fixed-length
pseudorandom key K. The second stage ”expands” the key K into several additional pseudorandom
keys (the output of the KDF).

In many applications, the input keying material is not necessarily distributed uniformly, and the
attacker may have some partial knowledge about it (for example, a Diffie-Hellman value computed
by a key exchange protocol) or even partial control of it (as in some entropy-gathering applications).
Thus, the goal of the ”extract” stage is to ”concentrate” the possibly dispersed entropy of the input
keying material into a short, but cryptographically strong, pseudorandom key. In some applications,
the input may already be a good pseudorandom key; in these cases, the ”extract” stage is not
necessary, and the ”expand” part can be used alone.

The second stage ”expands” the pseudorandom key to the desired length; the number and
lengths of the output keys depend on the specific cryptographic algorithms for which the keys are
needed.

14.3.2 HKDF Extract

To perform the extraction phase, use the following function:

int hkdf_extract( int hash_idx,

const unsigned char *salt,

unsigned long saltlen,

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

The hash idx parameter is the index into the descriptor table of the hash you want to use. The salt
parameter is a pointer to the array of octets of length saltlen containing the salt or a NULL pointer
if a salt is not being used (in that case set saltlen to 0). in is a pointer to an array of octets of
length inlen containing the source entropy. The extracted output is stored in the location pointed
to by out. You must set outlen to the size of the destination buffer before calling this function. It
is updated to the length of the extracted output. If outlen is too small the extracted output will
be truncated.

While the salt is optional, using one improves HKDF’s security. If used, the salt should be
randomly chosen, but does not need to be secret and may be re-used. Please see RFC5869 section
3.1 for more details.

14.3.3 HKDF Expand

To perform the expansion phase, use the following function:
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int hkdf_expand( int hash_idx,

const unsigned char *info,

unsigned long infolen,

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long outlen);

The hash idx parameter is the index into the descriptor table of the hash you want to use. The
info parameter, an array of octets of length infolen, is an optional parameter (set info to NULL
and infolen to 0 if not using it) which may be used to bind the derived keys to some application
and context specific information. This prevents the same keying material from being generated
in different contexts. Please see RFC5869 section 3.2 for more information. The extracted keying
material is passed as octet array in of length inlen. Expanded output of length outlen is generated
and stored in octet arrat out.

14.3.4 HKDF Extract-and-Expand

To perform both phases together, use the following function:

int hkdf( int hash_idx,

const unsigned char *salt,

unsigned long saltlen,

const unsigned char *info,

unsigned long infolen,

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long outlen);

Parameters are as in hkdf extract() and hkdf expand().
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Chapter 15

Miscellaneous

15.1 Base64 Encoding and Decoding

The library provides functions to encode and decode a RFC 4648 Base64 coding scheme.

15.1.1 Standard ’base64’ encoding

The characters used in the mappings are:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Those characters are supported in the 7-bit ASCII map, which means they can be used for transport
over common e-mail, usenet and HTTP mediums. The format of an encoded stream is just a literal
sequence of ASCII characters where a group of four represent 24-bits of input. The first four chars
of the encoders output is the length of the original input. After the first four characters is the rest
of the message.

Often, it is desirable to line wrap the output to fit nicely in an e-mail or usenet posting. The
decoder allows you to put any character (that is not in the above sequence) in between any character
of the encoders output. You may not however, break up the first four characters.

To encode a binary string in base64 call:

int base64_encode(const unsigned char *in,

unsigned long len,

char *out,

unsigned long *outlen);

Where in is the binary string and out is where the ASCII output is placed. You must set the value
of outlen prior to calling this function and it sets the length of the base64 output in outlen when it
is done. To decode a base64 string call:

int base64_decode( const char *in,

unsigned long len,

unsigned char *out,

unsigned long *outlen);
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The function base64 decode works in a dangerously relaxed way which allows decoding some
inputs that do not strictly follow the standard.

If you want to be strict during decoding you can use:

int base64_strict_decode( const char *in,

unsigned long len,

unsigned char *out,

unsigned long *outlen);

There is also so called sane mode that ignores white-spaces (CR, LF, TAB, space), does not
care about trailing = and also ignores the last input byte in case it is NUL.

int base64_sane_decode( const char *in,

unsigned long len,

unsigned char *out,

unsigned long *outlen);

15.1.2 URL–safe ’base64url’ encoding

The characters used in the mappings are:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_

Those characters are sometimes also called URL and filename safe alphabet. The interface is
analogous to base64 xxxx functions in previous chapter.

int base64url_encode(const unsigned char *in, unsigned long len,

char *out, unsigned long *outlen);

int base64url_strict_encode(const unsigned char *in, unsigned long inlen,

char *out, unsigned long *outlen);

int base64url_decode( const char *in, unsigned long len,

unsigned char *out, unsigned long *outlen);

int base64url_strict_decode( const char *in, unsigned long len,

unsigned char *out, unsigned long *outlen);

int base64url_sane_decode( const char *in, unsigned long len,

unsigned char *out, unsigned long *outlen);

15.2 Base32 Encoding and Decoding

The library provides functions to encode and decode a Base32 coding scheme. The supported
mappings are:
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id Mapping Name
BASE32 RFC4648 ABCDEFGHIJKLMNOPQRSTUVWXYZ234567 RFC-4648
BASE32 BASE32HEX 0123456789ABCDEFGHIJKLMNOPQRSTUV Base32hex
BASE32 ZBASE32 YBNDRFG8EJKMCPQXOT1UWISZA345H769 ZBase32
BASE32 CROCKFORD 0123456789ABCDEFGHJKMNPQRSTVWXYZ Crockford

Figure 15.1: Base32 coding schemes

To encode a binary string in base32 call:

int base32_encode(const unsigned char *in,

unsigned long len,

char *out,

unsigned long *outlen,

base32_alphabet id);

Where in is the binary string, out is where the ASCII output is placed and id is BASE32 RFC4648,
BASE32 BASE32HEX, BASE32 ZBASE32 or BASE32 CROCKFORD according the table above.

To decode a base32 string call:

int base32_decode(const char *in,

unsigned long len,

unsigned char *out,

unsigned long *outlen,

base32_alphabet id);

15.3 Base16 Encoding and Decoding

The library provides functions to encode and decode a Base16 a.k.a Hex string.
To encode a binary string in base16 call:

int base16_encode(const unsigned char *in, unsigned long inlen,

char *out, unsigned long *outlen,

int caps);

Where in is the binary string, out is where the ASCII output is placed and caps is either 0 to
use lower-letter a..f or else to use caps A..F.

To decode a base16 string call:

int base16_decode(const char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

15.4 Padding data

The library provides functions to pad and depad according to several standards, please refer to
Figure 15.2 for details about the supported standards.
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15.4.1 Padding mode argument

All functions have a mode argument which must be set to the bit-wise OR of the desired blocksize
and one of the modes as shown in the following table:

mode Standard
LTC PAD PKCS7 RFC-5652 / PKCS #7
LTC PAD ISO 10126 ISO/IEC 10126 a

LTC PAD ANSI X923 ANSI X.923
LTC PAD ONE AND ZERO ISO/IEC 7816-4
LTC PAD ZERO ISO/IEC 10118-1
LTC PAD ZERO ALWAYS ISO/IEC 10118-1 b

aISO/IEC 10126 support is only available when the library is built with rng get bytes() support
bLTC PAD ZERO ALWAYS adds an entire block of padding if the plaintext length is divisible by the blocksize

Figure 15.2: Padding modes

ISO/IEC 10126 has been withdrawn as an ISO/IEC standard in 2007 and is only provided for
historical reasons (it was used e.g. in early versions of TLS/SSL). Therefore it should not be used
for new designs.

15.4.2 Padding

To pad data call:

int padding_pad(unsigned char *data,

unsigned long length,

unsigned long *padded_length,

unsigned long mode);

Where data is a pointer to a buffer containing the data to pad, length is the original length of
the data to pad and padded length is a pointer that should contain the length of buffer available
and will contain the padded data-length. It is possible to call this function with padded length set
to 0 which will then return with the error-code CRYPT BUFFER OVERFLOW and padded length
set to the required size of the buffer.

15.4.3 Depadding

To depad data call:

int pkcs7_depad(unsigned char *data,

unsigned long *length,

unsigned long mode);

Where data is a pointer to the data to depad, length is a pointer that should contain the length
of the padded data and will be updated to contain the length of the data after depadding.
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15.5 Primality Testing

The library includes primality testing and random prime functions as well. The primality tester will
perform the test in two phases. First it will perform trial division by the first few primes. Second it
will perform LTC MILLER RABIN REPS (pre-defined to 35) rounds of the Rabin-Miller primality
testing algorithm. If the candidate passes both phases it is declared prime otherwise it is declared
composite. No prime number will fail the two phases but composites can. Each round of the Rabin-
Miller algorithm reduces the probability of a pseudo-prime by 1

4 therefore after sixteen rounds the

probability is no more than
(
1
4

)8
= 2−16. In practice the probability of error is in fact much lower

than that.
When making random primes the trial division step is in fact an optimized implementation of

Implementation of Fast RSA Key Generation on Smart Cards1. In essence a table of machine-word
sized residues are kept of a candidate modulo a set of primes. When the candidate is rejected and
ultimately incremented to test the next number the residues are updated without using multi-word
precision math operations. As a result the routine can scan ahead to the next number required for
testing with very little work involved.

In the event that a composite did make it through it would most likely cause the the algorithm
trying to use it to fail. For instance, in RSA two primes p and q are required. The order of the
multiplicative sub-group (modulo pq) is given as ϕ(pq) or (p− 1)(q − 1). The decryption exponent
d is found as de ≡ 1 (mod ϕ(pq)). If either p or q is composite the value of d will be incorrect
and the user will not be able to sign or decrypt messages at all. Suppose p was prime and q was
composite this is just a variation of the multi-prime RSA. Suppose q = rs for two primes r and s
then ϕ(pq) = (p− 1)(r − 1)(s− 1) which clearly is not equal to (p− 1)(rs− 1).

These are not technically part of the LibTomMath library but this is the best place to document
them. To test if a mp int is prime call:

int is_prime(mp_int *N, int *result);

This puts a one in result if the number is probably prime, otherwise it places a zero in it. It is
assumed that if it returns an error that the value in result is undefined. To make a random prime
call:

int rand_prime( mp_int *N,

unsigned long len,

prng_state *prng,

int wprng);

Where len is the size of the prime in bytes (2 ≤ len ≤ 256). You can set len to the negative size
you want to get a prime of the form p ≡ 3 (mod 4). So if you want a 1024-bit prime of this sort
pass len = -128 to the function. Upon success it will return CRYPT OK and N will contain an
integer which is very likely prime.

15.6 Random MPI Generation

Several Public Key Cryptography algorithms require random MPI’s for operations like signature
generation. The library provides two API functions to generate random MPI’s which allow the
utilisation of a user-defined PRNG to aquire the random data.

1Chenghuai Lu, Andre L. M. dos Santos and Francisco R. Pimentel
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int rand_bn_bits( void *N,

int bits,

prng_state *prng,

int wprng);

This sets N to a bits-long random MPI.

int rand_bn_upto( void *N,

void *limit,

prng_state *prng,

int wprng);

This ensures that N is set to a random MPI in the range 1 ≤ N < limit.

15.7 Helper functions

15.7.1 Zero’ing data

Optimizing compilers are sometimes allowed to remove an invocation of memset(out, 0, outlen),
which could result in sensitive data not being zero’ed out. LibTomCrypt, therefore, implements a
variant of this routine, zeromem(out, outlen), which won’t be optimized away.

void zeromem(volatile void *out, size_t outlen);

This zero’s the buffer out of size outlen.

15.7.2 Constant-time memory compare

Some symmetric-key cryptographic operation-modes are vulnerable to timing attacks in case non-
contant-time memory comparison functions are used to compare results. Therefore LibTomCrypt
implements a constant-time memory compare function.

int mem_neq(const void *a, const void *b, size_t len);

This will compare the buffer a against the buffer b for len bytes. The return value is either 0
when the content of a and b is equal or 1 when it differs.

15.7.3 Radix to binary conversion

All public-key cryptographic algorithms provide a way to import and/or export their key parameters
in binary format. In order to be able to import keys stored in different formats, e.g. hexadecimal
strings, the radix to bin() function is provided.

int radix_to_bin(const void *in, int radix, void *out, unsigned long *len);

This will convert the MPI in of radix radix to the buffer pointed to by out. The field len is a
pointer to the length of the buffer on input and the length stored on output.

In case you don’t know the length of the buffer you can use radix to bin() to determine the
length for you.
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#include <tomcrypt.h>

int main(void)

{

const char *mpi = "AABBCCDD";

unsigned long l = 0;

void* buf;

int ret;

ltc_mp = ltm_desc;

if (radix_to_bin(mpi, 16, NULL, &l) != CRYPT_BUFFER_OVERFLOW)

return EXIT_FAILURE;

buf = malloc(l);

ret = EXIT_SUCCESS;

if (radix_to_bin(mpi, 16, buf, &l) != CRYPT_OK)

ret = EXIT_FAILURE;

free(buf);

return ret;

}

15.8 Dynamic Language Support

Various LibTomCrypt functions require that their callers define a struct (or a union) and provide
a pointer to it, or allocate sufficient memory and provide its pointer. Programs written in C or
C++ can obtain the necessary information by simply including the appropriate header files, but
dynamic languages like Python don’t understand C header files, and without assistance, have no
way to know how much memory to allocate. A similar story can be told for certain LTC constant
values.

LTC’s Dynamic Language Support provides functions that return the size of a named struct or
union, the value of a named constant, a list of all sizes supported, and a list of all named constants
supported. Two additional functions can initialize LTM and TFM.

To get the size of a named struct or union:

int crypt_get_size( const char *namein,

unsigned int *sizeout);

namein is spelled exactly as found in the C header files. This function will return -1 if namein is
not found.

To get the value of a named constant:

int crypt_get_constant(const char *namein,

int *valueout);

namein is spelled exactly as found in the C header files. Again, -1 is returned if namein is not
found.

To get the names of all the supported structs, unions and constants:



148 www.libtom.net

int crypt_list_all_sizes( char *names_list,

unsigned int *names_list_size);

int crypt_list_all_constants( char *names_list,

unsigned int *names_list_size);

You may want to call these functions twice, first to get the amount of memory to be allocated
for the names list, and a final time to actually populate names list. If names list is NULL,
names list size will be the minimum size needed to receive the complete names list. If names list
is NOT NULL, names list must be a pointer to sufficient memory into which the names list will
be written. Also, the value in names list size sets the upper bound of the number of characters to
be written. A -1 return value signifies insufficient space.

The format of the names list string is a series of name, value pairs where each name and value
is separated by a comma, the pairs are separated by newlines, and the list is null terminated.

int crypt_mp_init(const char* mpi);

To ease the setup of a specific math descriptor, in cases where the library was compiled with
support for multiple MPI libraries, the function crypt mp init() is provided. It takes a string to
the desired MPI library to use as an argument. The three default MPI libraries are identified as
follows, LibTomMath as "ltm", TomsFastmath as "tfm" and the GNU Multi Precision Arithmetic
Library as "gmp". The identification happens case-insensitive and only on the first character.

Here is a Python program demonstrating how to call various LTC dynamic language support
functions.

A more detailed example is given in the library source in demos/demo dynamic.py.

from ctypes import *

# load the OSX shared/dynamic library

LIB = CDLL(’libtomcrypt.dylib’)

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# print info about this library

little = c_int() # assume False is big

word32 = c_int() # assume False is 64-bit

LIB.crypt_get_constant(’ENDIAN_LITTLE’, byref(little))

LIB.crypt_get_constant(’ENDIAN_32BITWORD’, byref(word32))

print(’this lib was compiled for a %s endian %d-bit processor’

% (’little’ if little else ’big’, 32 if word32 else 64))

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# print the size of the struct named "sha256_state"

struct_size = c_int()
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# don’t forget to add the ’_struct’ or ’_union’ suffix

LIB.crypt_get_size(’sha256_state_struct’, byref(struct_size))

print(’allocate %d bytes for sha256_state’ % struct_size.value)

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# print a list of all supported named constants

list_size = c_int()

# call with NULL to calc the min size needed for the list

LIB.crypt_list_all_constants(None, byref(list_size))

# allocate required space

names_list = c_buffer(list_size.value)

# call again providing a pointer to where to write the list

LIB.crypt_list_all_constants(names_list, byref(list_size))

print(names_list.value)

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# print a list of all supported named structs and unions

list_size = c_int()

# call with NULL to calc the min size needed for the list

LIB.crypt_list_all_sizes(None, byref(list_size))

# allocate required space

names_list = c_buffer(list_size.value)

# call again providing a pointer to where to write the list

LIB.crypt_list_all_sizes(names_list, byref(list_size))

print(names_list.value)
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Chapter 16

Programming Guidelines

16.1 Secure Pseudo Random Number Generators

Probably the single most vulnerable point of any cryptosystem is the PRNG. Without one, gen-
erating and protecting secrets would be impossible. The requirement that one be setup correctly
is vitally important, and to address this point the library does provide two RNG sources that will
address the largest amount of end users as possible. The sprng PRNG provides an easy to access
source of entropy for any application on a UNIX (and the like) or Windows computer.

However, when the end user is not on one of these platforms, the application developer must
address the issue of finding entropy. This manual is not designed to be a text on cryptography. I
would just like to highlight that when you design a cryptosystem make sure the first problem you
solve is getting a fresh source of entropy.

16.2 Preventing Trivial Errors

Two simple ways to prevent trivial errors is to prevent overflows, and to check the return values.
All of the functions which output variable length strings will require you to pass the length of the
destination. If the size of your output buffer is smaller than the output it will report an error.
Therefore, make sure the size you pass is correct!

Also, virtually all of the functions return an error code or CRYPT OK. You should detect all
errors, as simple typos can cause algorithms to fail to work as desired.

16.3 Registering Your Algorithms

To avoid linking and other run–time errors it is important to register the ciphers, hashes and
PRNGs you intend to use before you try to use them. This includes any function which would use
an algorithm indirectly through a descriptor table.

A neat bonus to the registry system is that you can add external algorithms that are not part of
the library without having to hack the library. For example, suppose you have a hardware specific
PRNG on your system. You could easily write the few functions required plus a descriptor. After
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registering your PRNG, all of the library functions that need a PRNG can instantly take advantage
of it. The same applies for ciphers, hashes, and bignum math routines.

16.4 Key Sizes

16.4.1 Symmetric Ciphers

For symmetric ciphers, use as large as of a key as possible. For the most part bits are cheap so
using a 256–bit key is not a hard thing to do. As a good rule of thumb do not use a key smaller
than 128 bits.

16.4.2 Asymmetric Ciphers

The following chart gives the work factor for solving a DH/RSA public key using the NFS. The
work factor for a key of order n is estimated to be

e1.923·ln(n)
1
3 ·ln(ln(n))

2
3 (16.1)

Note that n is not the bit-length but the magnitude. For example, for a 1024-bit key n = 21024.
The work required is:

RSA/DH Key Size (bits) Work Factor (log2)
512 63.92
768 76.50
1024 86.76
1536 103.37
2048 116.88
2560 128.47
3072 138.73
4096 156.49

Figure 16.1: RSA/DH Key Strength

The work factor for ECC keys is much higher since the best attack is still fully exponential.
Given a key of magnitude n it requires

√
n work. The following table summarizes the work required:
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ECC Key Size (bits) Work Factor (log2)
112 56
128 64
160 80
192 96
224 112
256 128
384 192
521 260.5

Figure 16.2: ECC Key Strength

Using the above tables the following suggestions for key sizes seems appropriate:

Security Goal RSA/DH Key Size (bits) ECC Key Size (bits)
Near term 1024 160
Short term 1536 192
Long Term 2560 384

16.5 Thread Safety

The library is not fully thread safe but several simple precautions can be taken to avoid any
problems. The registry functions such as register cipher() are not thread safe no matter what you
do. It is best to call them from your programs initialization code before threads are initiated.

The rest of the code uses state variables you must pass it such as hash state, hmac state, etc.
This means that if each thread has its own state variables then they will not affect each other, and
are fully thread safe. This is fairly simple with symmetric ciphers and hashes.

The only sticky issue is a shared PRNG which can be alleviated with the careful use of mutex
devices. Defining LTC PTHREAD for instance, enables pthreads based mutex locking in vari-
ous routines such as the Yarrow and Fortuna PRNGs, the fixed point ECC multiplier, and other
routines.
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Chapter 17

Configuring and Building the
Library

17.1 Introduction

The library is fairly flexible about how it can be built, used, and generally distributed. Additions
are being made with each new release that will make the library even more flexible. Each of the
classes of functions can be disabled during the build process to make a smaller library. This is
particularly useful for shared libraries.

As of v1.06 of the library, the build process has been moved to two steps for the typical LibTom-
Crypt application. This is because LibTomCrypt no longer provides a math API on its own and
relies on third party libraries (such as LibTomMath, GnuMP, or TomsFastMath).

The build process now consists of installing a math library first, and then building and installing
LibTomCrypt with a math library configured. Note that LibTomCrypt can be built with no internal
math descriptors. This means that one must be provided at either build, or run time for the
application. LibTomCrypt comes with three math descriptors that provide a standard interface to
math libraries.

17.2 Makefile variables

All GNU driven makefiles (including the makefile for ICC) use a set of common variables to control
the build and install process. Most of the settings can be overwritten from the command line which
makes custom installation a breeze.

17.2.1 MAKE, CC, AR and CROSS COMPILE

The MAKE, CC and AR flags can all be overwritten. They default to make, $CC and $AR
respectively. Changing MAKE allows you to change what program will be invoked to handle sub–
directories. For example, this

gmake install MAKE=gmake
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will build and install the libraries with the gmake tool. Similarly,

make CC=arm-gcc AR=arm-ar

will build the library using arm–gcc as the compiler and arm–ar as the archiver.

make CROSS_COMPILE=arm-none-eabi-

will build the library using the arm–none–eabi– prefix’ed toolchain.

17.2.2 IGNORE SPEED and LTC DEBUG

When IGNORE SPEED has been defined the default optimization flags for CFLAGS will be
disabled which allows the developer to specify new CFLAGS on the command line. E.g. to add
debugging

make IGNORE_SPEED=1 CFLAGS="-g3"

This will turn off optimizations and add -g3 to the CFLAGS which enables debugging.
Alternatively one can define LTC DEBUG instead, which additionally defines LTC NO ASM

and enables debug output on test failures.
Defining LTC DEBUG=2 has the effect to enable verbose output in some of the tests.

make LTC_DEBUG=2

will build the library without compiler-optimisation or architecture specific code and will enable
debugging and verbose debug output.

17.2.3 LIBNAME

LIBNAME is the name of the output library (archive) to create. It defaults to libtomcrypt.a for
static builds and libtomcrypt.la for shared. On installation of the shared library the appropriately
versioned libtomcrypt.so, libtomcrypt.so.0 etc. will be created by libtool.

17.2.4 Installation Directories

DESTDIR is the location where the output will be stored. It default to an empty string. PRE-
FIX is the prefix for the installation directories. It defaults to /usr/local. LIBPATH is the
location of the library directory which defaults to $PREFIX/lib. INCPATH is the location of the
header file directory which defaults to $PREFIX/include. DATAPATH is the location of the data
(documentation) directory which defaults to $PREFIX/share/doc/libtomcrypt/pdf. BINPATH is
the location of the binary file directory which defaults to $PREFIX/bin.

They allow to configure the installation locations of the libary.

make PREFIX=/home/tom/project DATAPATH=/home/tom/project/docs install

This will build the library and install it to the directories under /home/tom/project/. e.g.
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/home/tom/project/:

total 1

drwxr-xr-x 2 tom users 80 Jul 30 16:02 docs

drwxr-xr-x 2 tom users 528 Jul 30 16:02 include

drwxr-xr-x 2 tom users 80 Jul 30 16:02 lib

/home/tom/project/docs:

total 452

-rwxr-xr-x 1 tom users 459009 Jul 30 16:02 crypt.pdf

/home/tom/project/include:

total 132

-rwxr-xr-x 1 tom users 2482 Jul 30 16:02 tomcrypt.h

-rwxr-xr-x 1 tom users 702 Jul 30 16:02 tomcrypt_argchk.h

-rwxr-xr-x 1 tom users 2945 Jul 30 16:02 tomcrypt_cfg.h

-rwxr-xr-x 1 tom users 22763 Jul 30 16:02 tomcrypt_cipher.h

-rwxr-xr-x 1 tom users 5174 Jul 30 16:02 tomcrypt_custom.h

-rwxr-xr-x 1 tom users 11314 Jul 30 16:02 tomcrypt_hash.h

-rwxr-xr-x 1 tom users 11571 Jul 30 16:02 tomcrypt_mac.h

-rwxr-xr-x 1 tom users 13614 Jul 30 16:02 tomcrypt_macros.h

-rwxr-xr-x 1 tom users 14714 Jul 30 16:02 tomcrypt_math.h

-rwxr-xr-x 1 tom users 632 Jul 30 16:02 tomcrypt_misc.h

-rwxr-xr-x 1 tom users 10934 Jul 30 16:02 tomcrypt_pk.h

-rwxr-xr-x 1 tom users 2634 Jul 30 16:02 tomcrypt_pkcs.h

-rwxr-xr-x 1 tom users 7067 Jul 30 16:02 tomcrypt_prng.h

-rwxr-xr-x 1 tom users 1467 Jul 30 16:02 tomcrypt_test.h

/home/tom/project/lib:

total 1073

-rwxr-xr-x 1 tom users 1096284 Jul 30 16:02 libtomcrypt.a

For further information see: https://www.gnu.org/prep/standards/html_node/DESTDIR.html
and https://www.freebsd.org/doc/en/books/porters-handbook/porting-prefix.html.

17.3 Extra libraries

EXTRALIBS specifies any extra libraries required to link the test programs and shared libraries.
They are specified in the notation that GCC expects for global archives.

make install test timing CFLAGS="-DTFM_DESC -DUSE_TFM" EXTRALIBS=-ltfm

This will install the library using the TomsFastMath library and link the libtfm.a library out
of the default library search path. The two defines are explained below. You can specify mul-
tiple archives (say if you want to support two math libraries, or add on additional code) to the
EXTRALIBS variable by separating them by a space.

Note that EXTRALIBS is not required if you are only making and installing the static library
but none of the test programs.

https://www.gnu.org/prep/standards/html_node/DESTDIR.html
https://www.freebsd.org/doc/en/books/porters-handbook/porting-prefix.html


158 www.libtom.net

17.4 Building a Static Library

Building a static library is fairly trivial as it only requires one invocation of the GNU make com-
mand.

make install CFLAGS="-DTFM_DESC"

That will build LibTomCrypt (including the TomsFastMath descriptor), and install it in the
default locations indicated previously. You can enable the built–in LibTomMath descriptor as well
(or in place of the TomsFastMath descriptor). Similarly, you can build the library with no built–in
math descriptors.

make install

In this case, no math descriptors are present in the library and they will have to be made
available at build or run time before you can use any of the public key functions.

Note that even if you include the built–in descriptors you must link against the source library
as well.

gcc -DTFM_DESC myprogram.c -ltomcrypt -ltfm -o myprogram

This will compile myprogram and link it against the LibTomCrypt library as well as Toms-
FastMath (which must have been previously installed). Note that we define TFM DESC for
compilation. This is so that the TFM descriptor symbol will be defined for the client application
to make use of without giving warnings.

17.5 Building a Shared Library

LibTomCrypt can also be built as a shared library through the makefile.shared make script. It
is similar to use as the static script except that you must specify the EXTRALIBS variable at
install time.

make -f makefile.shared install CFLAGS="-DTFM_DESC" EXTRALIBS=-ltfm

This will build and install the library and link the shared object against the TomsFastMath
library (which must be installed as a shared object as well). The shared build process requires
libtool to be installed.

17.6 Header Configuration

The file tomcrypt cfg.h is what lets you control various high level macros which control the behaviour
of the library. Build options are also stored in tomcrypt custom.h which allow the enabling and
disabling of various algorithms.
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ARGTYPE

This lets you control how the LTC ARGCHK macro will behave. The macro is used to check
pointers inside the functions against NULL. There are four settings for ARGTYPE. When set to
0, it will have the default behaviour of printing a message to stderr and raising a SIGABRT signal.
This is provided so all platforms that use LibTomCrypt can have an error that functions similarly.
When set to 1, it will simply pass on to the assert() macro. When set to 2, the macro will display
the error to stderr then return execution to the caller. This could lead to a segmentation fault (e.g.
when a pointer is NULL) but is useful if you handle signals on your own. When set to 3, it will
resolve to a empty macro and no error checking will be performed. Finally, when set to 4, it will
return CRYPT INVALID ARG to the caller.

Endianness

There are five macros related to endianness issues. For little endian platforms define, ENDIAN LITTLE.
For big endian platforms define ENDIAN BIG. Similarly when the default word size of an un-
signed long is 32-bits define ENDIAN 32BITWORD or define ENDIAN 64BITWORD when
its 64-bits. If you do not define any of them the library will automatically use ENDIAN NEUTRAL
which will work on all platforms.

Currently LibTomCrypt will detect x86-32, x86-64, MIPS R5900, SPARC and SPARC64 running
GCC as well as x86-32 running MSVC.

17.7 Customisation

There are also options you can specify from the tomcrypt custom.h header file.

17.7.1 X memory routines

At the top of tomcrypt custom.h are a series of macros denoted as XMALLOC, XCALLOC, XRE-
ALLOC, XFREE, and so on. They resolve to the name of the respective functions from the standard
C library by default. This lets you substitute in your own memory routines. If you substitute in
your own functions they must behave like the standard C library functions in terms of what they
expect as input and output.

These macros are handy for working with platforms which do not have a standard C library.
For instance, the OLPC1 bios code uses these macros to redirect to very compact heap and string
operations.

17.7.2 X clock routines

The rng get bytes() function can call a function that requires the clock() function. These macros
let you override the default clock() used with a replacement. By default the standard C library
clock() function is used.

1See http://dev.laptop.org/git?p=bios-crypto;a=summary

http://dev.laptop.org/git?p=bios-crypto;a=summary
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17.7.3 LTC NO FILE

During the build if LTC NO FILE is defined then any function in the library that uses file I/O will
not call the file I/O functions and instead simply return CRYPT NOP. This should help resolve
any linker errors stemming from a lack of file I/O on embedded platforms.

17.7.4 LTC CLEAN STACK

When this functions is defined the functions that store key material on the stack will clean up
afterwards. Assumes that you have no memory paging with the stack.

17.7.5 LTC TEST

When this has been defined the various self–test functions (for ciphers, hashes, prngs, etc) are
included in the build. This is the default configuration. If LTC NO TEST has been defined, the
testing routines will be compacted and only return CRYPT NOP.

17.7.6 LTC NO FAST

When this has been defined the library will not use faster word oriented operations. By default,
they are only enabled for platforms which can be auto-detected. This macro ensures that they are
never enabled.

17.7.7 LTC FAST

This mode (auto-detected with x86 32, x86 64 platforms with GCC or CLANG) configures various
routines such as ctr encrypt() or cbc encrypt() that it can safely XOR multiple octets in one step
by using a larger data type. This has the benefit of cutting down the overhead of the respective
functions.

This mode does have one downside. It can cause unaligned reads from memory if you are
not careful with the functions. This is why it has been enabled by default only for the x86 class
of processors where unaligned accesses are allowed. Technically LTC FAST is not portable since
unaligned accesses are not covered by the ISO C specifications.

In practice however, you can use it on pretty much any platform (even MIPS) with care.

By design the fast mode functions won’t get unaligned on their own. For instance, if you call
ctr encrypt() right after calling ctr start() and all the inputs you gave are aligned than ctr encrypt()
will perform aligned memory operations only. However, if you call ctr encrypt() with an odd amount
of plaintext then call it again the CTR pad (the IV) will be partially used. This will cause the ctr
routine to first use up the remaining pad bytes. Then if there are enough plaintext bytes left it will
use whole word XOR operations. These operations will be unaligned.

The simplest precaution is to make sure you process all data in power of two blocks and handle
remainder at the end. e.g. If you are CTR’ing a long stream process it in blocks of (say) four
kilobytes and handle any remaining incomplete blocks at the end of the stream.

If you do plan on using the LTC FAST mode, a LTC FAST TYPE type which resolves to an
optimal sized data type you can perform integer operations with is required. For the auto-detected
platforms this type will be defined automatically. Ideally it should be four or eight bytes since it
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must properly divide the size of your block cipher (e.g. 16 bytes for AES). This means sadly if
you’re on a platform with 57–bit words (or something) you can’t use this mode. So sad.

17.7.8 LTC NO ASM

When this has been defined the library will not use any inline assembler. Only a few platforms
support assembler inlines but various versions of ICC and GCC cannot handle all of the assembler
functions.

17.7.9 Symmetric Ciphers, One-way Hashes, PRNGS and Public Key
Functions

There are a plethora of macros for the ciphers, hashes, PRNGs and public key functions which
are fairly self-explanatory. When they are defined the functionality is included otherwise it is not.
There are some dependency issues which are noted in the file. For instance, Yarrow requires CTR
chaining mode, a block cipher and a hash function.

Also see technical note number five for more details.

17.7.10 LTC EASY

When defined the library is configured to build fewer algorithms and modes. Mostly it sticks to
NIST and ANSI approved algorithms. See the header file tomcrypt custom.h for more details. It is
meant to provide literally an easy method of trimming the library build to the most minimum of
useful functionality.

17.7.11 TWOFISH SMALL and TWOFISH TABLES

Twofish is a 128-bit symmetric block cipher that is provided within the library. The cipher itself is
flexible enough to allow some trade-offs in the implementation. When TWOFISH SMALL is defined
the scheduled symmetric key for Twofish requires only 200 bytes of memory. This is achieved by not
pre-computing the substitution boxes. Having this defined will also greatly slow down the cipher.
When this macro is not defined Twofish will pre-compute the tables at a cost of 4KB of memory.
The cipher will be much faster as a result.

When TWOFISH TABLES is defined the cipher will use pre-computed (and fixed in code)
tables required to work. This is useful when TWOFISH SMALL is defined as the table values are
computed on the fly. When this is defined the code size will increase by approximately 500 bytes.
If this is defined but TWOFISH SMALL is not the cipher will still work but it will not speed up
the encryption or decryption functions.

17.7.12 GCM TABLES

When defined GCM will use a 64KB table (per GCM state) which will greatly speed up the per–
packet latency. It also increases the initialization time and is not suitable when you are going to
use a key a few times only.
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17.7.13 GCM TABLES SSE2

When defined GCM will use the SSE2 instructions to perform the GF (2x) multiply using 16 128–bit
XOR operations. It shaves a few cycles per byte of GCM output on both the AMD64 and Intel
Pentium 4 platforms. Requires GCC and an SSE2 equipped platform.

17.7.14 LTC SMALL CODE

When this is defined some of the code such as the Rijndael and SAFER+ ciphers are replaced with
smaller code variants. These variants are slower but can save quite a bit of code space.

17.7.15 LTC PTHREAD

When this is activated all of the descriptor table functions will use pthread locking to ensure thread
safe updates to the tables. Note that it doesn’t prevent a thread that is passively using a table
from being messed up by another thread that updates the table.

Generally the rule of thumb is to setup the tables once at startup and then leave them be. This
added build flag simply makes updating the tables safer.

17.7.16 LTC ECC TIMING RESISTANT

When this has been defined the ECC point multiplier (built–in to the library) will use a timing
resistant point multiplication algorithm which prevents leaking key bits of the private key (scalar).
It is a slower algorithm but useful for situations where timing side channels pose a significant threat.

This is enabled by default and can be disabled by defining LTC NO ECC TIMING RESISTANT.

17.7.17 LTC RSA BLINDING

When this has been defined the RSA modular exponentiation will use a blinding algorithm to
improve timing resistance.

This is enabled by default and can be disabled by defining LTC NO RSA BLINDING.

17.7.18 LTC RSA CRT HARDENING

When this has been defined the RSA modular exponentiation will do some sanity checks regarding
the CRT parameters and the operations’ results.

This is enabled by default and can be disabled by defining LTC NO RSA CRT HARDENING.

17.7.19 Math Descriptors

The library comes with three math descriptors that allow you to interface the public key cryptogra-
phy API to freely available math libraries. When GMP DESC, LTM DESC, or TFM DESC
are defined descriptors for the respective library are built and included in the library as gmp desc,
ltm desc, or tfm desc respectively.

In the test demos that use the libraries the additional flags USE GMP, USE LTM, and
USE TFM can be defined to tell the program which library to use. Only one of the USE flags can
be defined at once.



17.7 Customisation 163

make -f makefile.shared install timing CFLAGS="-DGMP_DESC -DLTM_DESC -DTFM_DESC -DUSE_TFM" \

EXTRALIBS="-lgmp -ltommath -ltfm"

That will build and install the library with all descriptors (and link against all), but only use
TomsFastMath in the timing demo.
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Chapter 18

Optimizations

18.1 Introduction

The entire API was designed with plug and play in mind at the low level. That is you can swap out
any cipher, hash, PRNG or bignum library and the dependent API will not require updating. This
has the nice benefit that one can add ciphers (etc.) not have to re–write portions of the API. For
the most part, LibTomCrypt has also been written to be highly portable and easy to build out of
the box on pretty much any platform. As such there are no assembler inlines throughout the code,
I make no assumptions about the platform, etc...

That works well for most cases but there are times where performance is of the essence. This API
allows optimized routines to be dropped in–place of the existing portable routines. For instance,
hand optimized assembler versions of AES could be provided. Any existing function that uses the
cipher could automatically use the optimized code without re–writing. This also paves the way for
hardware drivers that can access hardware accelerated cryptographic devices.

At the heart of this flexibility is the descriptor system. A descriptor is essentially just a C struct
which describes the algorithm and provides pointers to functions that do the required work. For a
given class of operation (e.g. cipher, hash, prng, bignum) the functions of a descriptor have identical
prototypes which makes development simple. In most dependent routines all an end developer has
to do is register XXX() the descriptor and they are set.

18.2 Ciphers

The ciphers in LibTomCrypt are accessed through the ltc cipher descriptor structure.

struct ltc_cipher_descriptor {

/** name of cipher */

char *name;

/** internal ID */

unsigned char ID;

/** min keysize (octets) */

int min_key_length,

165
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/** max keysize (octets) */

max_key_length,

/** block size (octets) */

block_length,

/** default number of rounds */

default_rounds;

/** Setup the cipher

@param key The input symmetric key

@param keylen The length of the input key (octets)

@param num_rounds The requested number of rounds (0==default)

@param skey [out] The destination of the scheduled key

@return CRYPT_OK if successful

*/

int (*setup)(const unsigned char *key,

int keylen,

int num_rounds,

symmetric_key *skey);

/** Encrypt a block

@param pt The plaintext

@param ct [out] The ciphertext

@param skey The scheduled key

@return CRYPT_OK if successful

*/

int (*ecb_encrypt)(const unsigned char *pt,

unsigned char *ct,

symmetric_key *skey);

/** Decrypt a block

@param ct The ciphertext

@param pt [out] The plaintext

@param skey The scheduled key

@return CRYPT_OK if successful

*/

int (*ecb_decrypt)(const unsigned char *ct,

unsigned char *pt,

symmetric_key *skey);

/** Test the block cipher

@return CRYPT_OK if successful,

CRYPT_NOP if self-testing has been disabled

*/

int (*test)(void);

/** Terminate the context

@param skey The scheduled key
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*/

void (*done)(symmetric_key *skey);

/** Determine a key size

@param keysize [in/out] The size of the key desired

The suggested size

@return CRYPT_OK if successful

*/

int (*keysize)(int *keysize);

/** Accelerators **/

/** Accelerated ECB encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_ecb_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks,

symmetric_key *skey);

/** Accelerated ECB decryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_ecb_decrypt)(const unsigned char *ct,

unsigned char *pt,

unsigned long blocks,

symmetric_key *skey);

/** Accelerated CBC encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_cbc_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks,

unsigned char *IV,

symmetric_key *skey);

/** Accelerated CBC decryption
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@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_cbc_decrypt)(const unsigned char *ct,

unsigned char *pt,

unsigned long blocks,

unsigned char *IV,

symmetric_key *skey);

/** Accelerated CTR encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param mode little or big endian counter (mode=0 or mode=1)

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_ctr_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks,

unsigned char *IV,

int mode,

symmetric_key *skey);

/** Accelerated LRW

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param tweak The LRW tweak

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_lrw_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks,

unsigned char *IV,

const unsigned char *tweak,

symmetric_key *skey);

/** Accelerated LRW

@param ct Ciphertext

@param pt Plaintext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)
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@param tweak The LRW tweak

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_lrw_decrypt)(const unsigned char *ct,

unsigned char *pt,

unsigned long blocks,

unsigned char *IV,

const unsigned char *tweak,

symmetric_key *skey);

/** Accelerated CCM packet (one-shot)

@param key The secret key to use

@param keylen The length of the secret key (octets)

@param uskey A previously scheduled key [can be NULL]

@param nonce The session nonce [use once]

@param noncelen The length of the nonce

@param header The header for the session

@param headerlen The length of the header (octets)

@param pt [out] The plaintext

@param ptlen The length of the plaintext (octets)

@param ct [out] The ciphertext

@param tag [out] The destination tag

@param taglen [in/out] The max size and resulting size

of the authentication tag

@param direction Encrypt or Decrypt direction (0 or 1)

@return CRYPT_OK if successful

*/

int (*accel_ccm_memory)(

const unsigned char *key, unsigned long keylen,

symmetric_key *uskey,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

/** Accelerated GCM packet (one shot)

@param key The secret key

@param keylen The length of the secret key

@param IV The initialization vector

@param IVlen The length of the initialization vector

@param adata The additional authentication data (header)

@param adatalen The length of the adata

@param pt The plaintext

@param ptlen The length of the plaintext/ciphertext

@param ct The ciphertext

@param tag [out] The MAC tag

@param taglen [in/out] The MAC tag length



170 www.libtom.net

@param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT)

@return CRYPT_OK on success

*/

int (*accel_gcm_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *IV, unsigned long IVlen,

const unsigned char *adata, unsigned long adatalen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

/** Accelerated one shot OMAC

@param key The secret key

@param keylen The key length (octets)

@param in The message

@param inlen Length of message (octets)

@param out [out] Destination for tag

@param outlen [in/out] Initial and final size of out

@return CRYPT_OK on success

*/

int (*omac_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

/** Accelerated one shot XCBC

@param key The secret key

@param keylen The key length (octets)

@param in The message

@param inlen Length of message (octets)

@param out [out] Destination for tag

@param outlen [in/out] Initial and final size of out

@return CRYPT_OK on success

*/

int (*xcbc_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

/** Accelerated one shot F9

@param key The secret key

@param keylen The key length (octets)

@param in The message

@param inlen Length of message (octets)

@param out [out] Destination for tag

@param outlen [in/out] Initial and final size of out

@return CRYPT_OK on success

@remark Requires manual padding

*/
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int (*f9_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

};

18.2.1 Name

The name parameter specifies the name of the cipher. This is what a developer would pass to
find cipher() to find the cipher in the descriptor tables.

18.2.2 Internal ID

This is a single byte Internal ID you can use to distinguish ciphers from each other.

18.2.3 Key Lengths

The minimum key length is min key length and is measured in octets. Similarly the maximum key
length is max key length. They can be equal and both must valid key sizes for the cipher. Values
in between are not assumed to be valid though they may be.

18.2.4 Block Length

The size of the ciphers plaintext or ciphertext is block length and is measured in octets.

18.2.5 Rounds

Some ciphers allow different number of rounds to be used. Usually you just use the default. The
default round count is default rounds.

18.2.6 Setup

To initialize a cipher (for ECB mode) the function setup() was provided. It accepts an array of key
octets key of length keylen octets. The user can specify the number of rounds they want through
num rounds where num rounds = 0 means use the default. The destination of a scheduled key is
stored in skey.

Inside the symmetric key union there is a void *data which you can use to allocate data if you
need a data structure that does not fit with the existing ones provided. Just make sure in your
done() function that you free the allocated memory.

18.2.7 Single block ECB

To process a single block in ECB mode the ecb encrypt() and ecb decrypt() functions were provided.
The plaintext and ciphertext buffers are allowed to overlap so you must make sure you do not
overwrite the output before you are finished with the input.
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18.2.8 Testing

The test() function is used to self–test the device. It takes no arguments and returns CRYPT OK if
all is working properly. You may return CRYPT NOP to indicate that no testing was performed.

18.2.9 Key Sizing

Occasionally, a function will want to find a suitable key size to use since the input is oddly sized.
The keysize() function is for this case. It accepts a pointer to an integer which represents the desired
size. The function then has to match it to the exact or a lower key size that is valid for the cipher.
For example, if the input is 25 and 24 is valid then it stores 24 back in the pointed to integer. It
must not round up and must return an error if the keysize cannot be mapped to a valid key size
for the cipher.

18.2.10 Acceleration

The next set of functions cover the accelerated functionality of the cipher descriptor. Any combi-
nation of these functions may be set to NULL to indicate it is not supported. In those cases the
software defaults are used (using the single ECB block routines).

Accelerated ECB

These two functions are meant for cases where a user wants to encrypt (in ECB mode no less) an
array of blocks. These functions are accessed through the accel ecb encrypt and accel ecb decrypt
pointers. The blocks count is the number of complete blocks to process.

Accelerated CBC

These two functions are meant for accelerated CBC encryption. These functions are accessed
through the accel cbc encrypt and accel cbc decrypt pointers. The blocks value is the number of
complete blocks to process. The IV is the CBC initialization vector. It is an input upon calling
this function and must be updated by the function before returning.

Accelerated CTR

This function is meant for accelerated CTR encryption. It is accessible through the accel ctr encrypt
pointer. The blocks value is the number of complete blocks to process. The IV is the CTR counter
vector. It is an input upon calling this function and must be updated by the function before return-
ing. The mode value indicates whether the counter is big (mode = CTR COUNTER BIG ENDIAN)
or little (mode = CTR COUNTER LITTLE ENDIAN) endian.

This function (and the way it’s called) differs from the other two since ctr encrypt() allows any
size input plaintext. The accelerator will only be called if the following conditions are met.

1. The accelerator is present

2. The CTR pad is empty

3. The remaining length of the input to process is greater than or equal to the block size.
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The CTR pad is empty when a multiple (including zero) blocks of text have been processed.
That is, if you pass in seven bytes to AES–CTR mode you would have to pass in a minimum of
nine extra bytes before the accelerator could be called. The CTR accelerator must increment the
counter (and store it back into the buffer provided) before encrypting it to create the pad.

The accelerator will only be used to encrypt whole blocks. Partial blocks are always handled in
software.

Accelerated LRW

These functions are meant for accelerated LRW. They process blocks of input in lengths of multiples
of 16 octets. They must accept the IV and tweak state variables and updated them prior to
returning. Note that you may want to disable LRW TABLES in tomcrypt custom.h if you intend
to use accelerators for LRW.

While both encrypt and decrypt accelerators are not required it is suggested as it makes
lrw setiv() more efficient.

Note that calling lrw done() will only invoke the cipher descriptor[].done() function on the sym-
metric key parameter of the LRW state. That means if your device requires any (LRW specific)
resources you should free them in your ciphers() done function. The simplest way to think of it is
to write the plugin solely to do LRW with the cipher. That way cipher descriptor[].setup() means
to init LRW resources and cipher descriptor[].done() means to free them.

Accelerated CCM

This function is meant for accelerated CCM encryption or decryption. It processes the entire packet
in one call. You can optimize the work flow somewhat by allowing the caller to call the setup()
function first to schedule the key if your accelerator cannot do the key schedule on the fly (for
instance). This function MUST support both key passing methods.

key uskey Source of key

NULL NULL Error, not supported

non-NULL NULL Use key, do a key schedule

NULL non-NULL Use uskey, key schedule not required

non-NULL non-NULL Use uskey, key schedule not required

This function is called when the user calls ccm memory().

Accelerated GCM

This function is meant for accelerated GCM encryption or decryption. It processes the entire packet
in one call. Note that the setup() function will not be called prior to this. This function must handle
scheduling the key provided on its own. It is called when the user calls gcm memory().

Accelerated OMAC

This function is meant to perform an optimized OMAC1 (CMAC) message authentication code
computation when the user calls omac memory().
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Accelerated XCBC-MAC

This function is meant to perform an optimized XCBC-MAC message authentication code compu-
tation when the user calls xcbc memory().

Accelerated F9

This function is meant to perform an optimized F9 message authentication code computation when
the user calls f9 memory(). Like f9 memory(), it requires the caller to perform any 3GPP related
padding before calling in order to ensure proper compliance with F9.

18.3 One–Way Hashes

The hash functions are accessed through the ltc hash descriptor structure.

struct ltc_hash_descriptor {

/** name of hash */

char *name;

/** internal ID */

unsigned char ID;

/** Size of digest in octets */

unsigned long hashsize;

/** Input block size in octets */

unsigned long blocksize;

/** ASN.1 OID */

unsigned long OID[16];

/** Length of DER encoding */

unsigned long OIDlen;

/** Init a hash state

@param hash The hash to initialize

@return CRYPT_OK if successful

*/

int (*init)(hash_state *hash);

/** Process a block of data

@param hash The hash state

@param in The data to hash

@param inlen The length of the data (octets)

@return CRYPT_OK if successful

*/

int (*process)( hash_state *hash,

const unsigned char *in,

unsigned long inlen);
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/** Produce the digest and store it

@param hash The hash state

@param out [out] The destination of the digest

@return CRYPT_OK if successful

*/

int (*done)( hash_state *hash,

unsigned char *out);

/** Self-test

@return CRYPT_OK if successful,

CRYPT_NOP if self-tests have been disabled

*/

int (*test)(void);

/* accelerated hmac callback: if you need to-do

multiple packets just use the generic hmac_memory

and provide a hash callback

*/

int (*hmac_block)(const unsigned char *key,

unsigned long keylen,

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

};

18.3.1 Name

This is the name the hash is known by and what find hash() will look for.

18.3.2 Internal ID

This is the internal ID byte used to distinguish the hash from other hashes.

18.3.3 Digest Size

The hashsize variable indicates the length of the output in octets.

18.3.4 Block Size

The blocksize variable indicates the length of input (in octets) that the hash processes in a given
invocation.

18.3.5 OID Identifier

This is the universal ASN.1 Object Identifier for the hash.
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18.3.6 Initialization

The init function initializes the hash and prepares it to process message bytes.

18.3.7 Process

This processes message bytes. The algorithm must accept any length of input that the hash would
allow. The input is not guaranteed to be a multiple of the block size in length.

18.3.8 Done

The done function terminates the hash and returns the message digest.

18.3.9 Acceleration

A compatible accelerator must allow processing data in any granularity which may require internal
padding on the driver side.

18.3.10 HMAC Acceleration

The hmac block() callback is meant for single–shot optimized HMAC implementations. It is called
directly by hmac memory() if present. If you need to be able to process multiple blocks per MAC
then you will have to simply provide a process() callback and use hmac memory() as provided in
LibTomCrypt.

18.4 Pseudo–Random Number Generators

The pseudo–random number generators are accessible through the ltc prng descriptor structure.

struct ltc_prng_descriptor {

/** Name of the PRNG */

char *name;

/** size in bytes of exported state */

int export_size;

/** Start a PRNG state

@param prng [out] The state to initialize

@return CRYPT_OK if successful

*/

int (*start)(prng_state *prng);

/** Add entropy to the PRNG

@param in The entropy

@param inlen Length of the entropy (octets)

@param prng The PRNG state

@return CRYPT_OK if successful

*/
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int (*add_entropy)(const unsigned char *in,

unsigned long inlen,

prng_state *prng);

/** Ready a PRNG state to read from

@param prng The PRNG state to ready

@return CRYPT_OK if successful

*/

int (*ready)(prng_state *prng);

/** Read from the PRNG

@param out [out] Where to store the data

@param outlen Length of data desired (octets)

@param prng The PRNG state to read from

@return Number of octets read

*/

unsigned long (*read)(unsigned char *out,

unsigned long outlen,

prng_state *prng);

/** Terminate a PRNG state

@param prng The PRNG state to terminate

@return CRYPT_OK if successful

*/

int (*done)(prng_state *prng);

/** Export a PRNG state

@param out [out] The destination for the state

@param outlen [in/out] The max size and resulting size

@param prng The PRNG to export

@return CRYPT_OK if successful

*/

int (*pexport)(unsigned char *out,

unsigned long *outlen,

prng_state *prng);

/** Import a PRNG state

@param in The data to import

@param inlen The length of the data to import (octets)

@param prng The PRNG to initialize/import

@return CRYPT_OK if successful

*/

int (*pimport)(const unsigned char *in,

unsigned long inlen,

prng_state *prng);

/** Self-test the PRNG

@return CRYPT_OK if successful,

CRYPT_NOP if self-testing has been disabled

*/
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int (*test)(void);

};

18.4.1 Name

The name by which find prng() will find the PRNG.

18.4.2 Export Size

When an PRNG state is to be exported for future use you specify the space required in this variable.

18.4.3 Start

Initialize the PRNG and make it ready to accept entropy.

18.4.4 Entropy Addition

Add entropy to the PRNG state. The exact behaviour of this function depends on the particulars
of the PRNG.

18.4.5 Ready

This function makes the PRNG ready to read from by processing the entropy added. The behaviour
of this function depends on the specific PRNG used.

18.4.6 Read

Read from the PRNG and return the number of bytes read. This function does not have to fill the
buffer but it is best if it does as many protocols do not retry reads and will fail on the first try.

18.4.7 Done

Terminate a PRNG state. The behaviour of this function depends on the particular PRNG used.

18.4.8 Exporting and Importing

An exported PRNG state is data that the PRNG can later import to resume activity. They’re not
meant to resume the same session but should at least maintain the same level of state entropy.

18.5 BigNum Math Descriptors

The library also makes use of the math descriptors to access math functions. While bignum math
libraries usually differ in implementation it hasn’t proven hard to write glue to use math libraries
so far. The basic descriptor looks like.
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/** math descriptor */

typedef struct {

/** Name of the math provider */

char *name;

/** Bits per digit, amount of bits must fit in an unsigned long */

int bits_per_digit;

/* ---- init/deinit functions ---- */

/** initialize a bignum

@param a The number to initialize

@return CRYPT_OK on success

*/

int (*init)(void **a);

/** init copy

@param dst The number to initialize and write to

@param src The number to copy from

@return CRYPT_OK on success

*/

int (*init_copy)(void **dst, void *src);

/** deinit

@param a The number to free

@return CRYPT_OK on success

*/

void (*deinit)(void *a);

/* ---- data movement ---- */

/** negate

@param src The number to negate

@param dst The destination

@return CRYPT_OK on success

*/

int (*neg)(void *src, void *dst);

/** copy

@param src The number to copy from

@param dst The number to write to

@return CRYPT_OK on success

*/

int (*copy)(void *src, void *dst);

/* ---- trivial low level functions ---- */

/** set small constant

@param a Number to write to

@param n Source upto bits_per_digit (actually meant for very small constants)
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@return CRYPT_OK on success

*/

int (*set_int)(void *a, unsigned long n);

/** get small constant

@param a Small number to read,

only fetches up to bits_per_digit from the number

@return The lower bits_per_digit of the integer (unsigned)

*/

unsigned long (*get_int)(void *a);

/** get digit n

@param a The number to read from

@param n The number of the digit to fetch

@return The bits_per_digit sized n’th digit of a

*/

ltc_mp_digit (*get_digit)(void *a, int n);

/** Get the number of digits that represent the number

@param a The number to count

@return The number of digits used to represent the number

*/

int (*get_digit_count)(void *a);

/** compare two integers

@param a The left side integer

@param b The right side integer

@return LTC_MP_LT if a < b,

LTC_MP_GT if a > b and

LTC_MP_EQ otherwise. (signed comparison)

*/

int (*compare)(void *a, void *b);

/** compare against int

@param a The left side integer

@param b The right side integer (upto bits_per_digit)

@return LTC_MP_LT if a < b,

LTC_MP_GT if a > b and

LTC_MP_EQ otherwise. (signed comparison)

*/

int (*compare_d)(void *a, unsigned long n);

/** Count the number of bits used to represent the integer

@param a The integer to count

@return The number of bits required to represent the integer

*/

int (*count_bits)(void * a);

/** Count the number of LSB bits which are zero

@param a The integer to count
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@return The number of contiguous zero LSB bits

*/

int (*count_lsb_bits)(void *a);

/** Compute a power of two

@param a The integer to store the power in

@param n The power of two you want to store (a = 2^n)

@return CRYPT_OK on success

*/

int (*twoexpt)(void *a , int n);

/* ---- radix conversions ---- */

/** read ascii string

@param a The integer to store into

@param str The string to read

@param radix The radix the integer has been represented in (2-64)

@return CRYPT_OK on success

*/

int (*read_radix)(void *a, const char *str, int radix);

/** write number to string

@param a The integer to store

@param str The destination for the string

@param radix The radix the integer is to be represented in (2-64)

@return CRYPT_OK on success

*/

int (*write_radix)(void *a, char *str, int radix);

/** get size as unsigned char string

@param a The integer to get the size (when stored in array of octets)

@return The length of the integer in octets

*/

unsigned long (*unsigned_size)(void *a);

/** store an integer as an array of octets

@param src The integer to store

@param dst The buffer to store the integer in

@return CRYPT_OK on success

*/

int (*unsigned_write)(void *src, unsigned char *dst);

/** read an array of octets and store as integer

@param dst The integer to load

@param src The array of octets

@param len The number of octets

@return CRYPT_OK on success

*/

int (*unsigned_read)( void *dst,

unsigned char *src,
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unsigned long len);

/* ---- basic math ---- */

/** add two integers

@param a The first source integer

@param b The second source integer

@param c The destination of "a + b"

@return CRYPT_OK on success

*/

int (*add)(void *a, void *b, void *c);

/** add two integers

@param a The first source integer

@param b The second source integer

(single digit of upto bits_per_digit in length)

@param c The destination of "a + b"

@return CRYPT_OK on success

*/

int (*addi)(void *a, unsigned long b, void *c);

/** subtract two integers

@param a The first source integer

@param b The second source integer

@param c The destination of "a - b"

@return CRYPT_OK on success

*/

int (*sub)(void *a, void *b, void *c);

/** subtract two integers

@param a The first source integer

@param b The second source integer

(single digit of upto bits_per_digit in length)

@param c The destination of "a - b"

@return CRYPT_OK on success

*/

int (*subi)(void *a, unsigned long b, void *c);

/** multiply two integers

@param a The first source integer

@param b The second source integer

(single digit of upto bits_per_digit in length)

@param c The destination of "a * b"

@return CRYPT_OK on success

*/

int (*mul)(void *a, void *b, void *c);

/** multiply two integers

@param a The first source integer

@param b The second source integer
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(single digit of upto bits_per_digit in length)

@param c The destination of "a * b"

@return CRYPT_OK on success

*/

int (*muli)(void *a, unsigned long b, void *c);

/** Square an integer

@param a The integer to square

@param b The destination

@return CRYPT_OK on success

*/

int (*sqr)(void *a, void *b);

/** Divide an integer

@param a The dividend

@param b The divisor

@param c The quotient (can be NULL to signify don’t care)

@param d The remainder (can be NULL to signify don’t care)

@return CRYPT_OK on success

*/

int (*mpdiv)(void *a, void *b, void *c, void *d);

/** divide by two

@param a The integer to divide (shift right)

@param b The destination

@return CRYPT_OK on success

*/

int (*div_2)(void *a, void *b);

/** Get remainder (small value)

@param a The integer to reduce

@param b The modulus (upto bits_per_digit in length)

@param c The destination for the residue

@return CRYPT_OK on success

*/

int (*modi)(void *a, unsigned long b, unsigned long *c);

/** gcd

@param a The first integer

@param b The second integer

@param c The destination for (a, b)

@return CRYPT_OK on success

*/

int (*gcd)(void *a, void *b, void *c);

/** lcm

@param a The first integer

@param b The second integer

@param c The destination for [a, b]

@return CRYPT_OK on success
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*/

int (*lcm)(void *a, void *b, void *c);

/** Modular multiplication

@param a The first source

@param b The second source

@param c The modulus

@param d The destination (a*b mod c)

@return CRYPT_OK on success

*/

int (*mulmod)(void *a, void *b, void *c, void *d);

/** Modular squaring

@param a The first source

@param b The modulus

@param c The destination (a*a mod b)

@return CRYPT_OK on success

*/

int (*sqrmod)(void *a, void *b, void *c);

/** Modular inversion

@param a The value to invert

@param b The modulus

@param c The destination (1/a mod b)

@return CRYPT_OK on success

*/

int (*invmod)(void *, void *, void *);

/* ---- reduction ---- */

/** setup Montgomery

@param a The modulus

@param b The destination for the reduction digit

@return CRYPT_OK on success

*/

int (*montgomery_setup)(void *a, void **b);

/** get normalization value

@param a The destination for the normalization value

@param b The modulus

@return CRYPT_OK on success

*/

int (*montgomery_normalization)(void *a, void *b);

/** reduce a number

@param a The number [and dest] to reduce

@param b The modulus

@param c The value "b" from montgomery_setup()

@return CRYPT_OK on success

*/
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int (*montgomery_reduce)(void *a, void *b, void *c);

/** clean up (frees memory)

@param a The value "b" from montgomery_setup()

@return CRYPT_OK on success

*/

void (*montgomery_deinit)(void *a);

/* ---- exponentiation ---- */

/** Modular exponentiation

@param a The base integer

@param b The power (can be negative) integer

@param c The modulus integer

@param d The destination

@return CRYPT_OK on success

*/

int (*exptmod)(void *a, void *b, void *c, void *d);

/** Primality testing

@param a The integer to test

@param b The number of Miller-Rabin tests that shall be executed

@param c The destination of the result (FP_YES if prime)

@return CRYPT_OK on success

*/

int (*isprime)(void *a, int b, int *c);

/* ---- (optional) ecc point math ---- */

/** ECC GF(p) point multiplication (from the NIST curves)

@param k The integer to multiply the point by

@param G The point to multiply

@param R The destination for kG

@param modulus The modulus for the field

@param map Boolean indicated whether to map back to affine or not

(can be ignored if you work in affine only)

@return CRYPT_OK on success

*/

int (*ecc_ptmul)( void *k,

ecc_point *G,

ecc_point *R,

void *modulus,

int map);

/** ECC GF(p) point addition

@param P The first point

@param Q The second point

@param R The destination of P + Q

@param modulus The modulus

@param mp The "b" value from montgomery_setup()
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@return CRYPT_OK on success

*/

int (*ecc_ptadd)(ecc_point *P,

ecc_point *Q,

ecc_point *R,

void *modulus,

void *mp);

/** ECC GF(p) point double

@param P The first point

@param R The destination of 2P

@param modulus The modulus

@param mp The "b" value from montgomery_setup()

@return CRYPT_OK on success

*/

int (*ecc_ptdbl)(ecc_point *P,

ecc_point *R,

void *modulus,

void *mp);

/** ECC mapping from projective to affine,

currently uses (x,y,z) => (x/z^2, y/z^3, 1)

@param P The point to map

@param modulus The modulus

@param mp The "b" value from montgomery_setup()

@return CRYPT_OK on success

@remark The mapping can be different but keep in mind a

ecc_point only has three integers (x,y,z) so if

you use a different mapping you have to make it fit.

*/

int (*ecc_map)(ecc_point *P, void *modulus, void *mp);

/** Computes kA*A + kB*B = C using Shamir’s Trick

@param A First point to multiply

@param kA What to multiple A by

@param B Second point to multiply

@param kB What to multiple B by

@param C [out] Destination point (can overlap with A or B)

@param modulus Modulus for curve

@return CRYPT_OK on success

*/

int (*ecc_mul2add)(ecc_point *A, void *kA,

ecc_point *B, void *kB,

ecc_point *C,

void *modulus);

/* ---- (optional) rsa optimized math (for internal CRT) ---- */

/** RSA Key Generation

@param prng An active PRNG state
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@param wprng The index of the PRNG desired

@param size The size of the key in octets

@param e The "e" value (public key).

e==65537 is a good choice

@param key [out] Destination of a newly created private key pair

@return CRYPT_OK if successful, upon error all allocated ram is freed

*/

int (*rsa_keygen)(prng_state *prng,

int wprng,

int size,

long e,

rsa_key *key);

/** RSA exponentiation

@param in The octet array representing the base

@param inlen The length of the input

@param out The destination (to be stored in an octet array format)

@param outlen The length of the output buffer and the resulting size

(zero padded to the size of the modulus)

@param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA

@param key The RSA key to use

@return CRYPT_OK on success

*/

int (*rsa_me)(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen, int which,

rsa_key *key);

/* ---- basic math continued ---- */

/** Modular addition

@param a The first source

@param b The second source

@param c The modulus

@param d The destination (a + b mod c)

@return CRYPT_OK on success

*/

int (*addmod)(void *a, void *b, void *c, void *d);

/** Modular substraction

@param a The first source

@param b The second source

@param c The modulus

@param d The destination (a - b mod c)

@return CRYPT_OK on success

*/

int (*submod)(void *a, void *b, void *c, void *d);

/* ---- misc stuff ---- */

/** Make a pseudo-random mpi
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@param a The mpi to make random

@param size The desired length

@return CRYPT_OK on success

*/

int (*rand)(void *a, int size);

} ltc_math_descriptor;

Most of the functions are fairly straightforward and do not need documentation. We’ll cover
the basic conventions of the API and then explain the accelerated functions.

18.5.1 Conventions

All bignums are accessed through an opaque void * data type. You must internally cast the pointer
if you need to access members of your bignum structure. During the init calls a void ** will be
passed where you allocate your structure and set the pointer then initialize the number to zero.
During the deinit calls you must free the bignum as well as the structure you allocated to place it
in.

All functions except the Montgomery reductions work from left to right with the arguments.
For example, mul(a, b, c) computes c← ab.

All functions (except where noted otherwise) return CRYPT OK to signify a successful oper-
ation. All error codes must be valid LibTomCrypt error codes.

The digit routines (including functions with the i suffix) use a ltc mp digit to represent the digit.
If your internal digit is larger than this you must then partition your digits. Note that if your digit
is smaller than an ltc mp digit that is also acceptable as the bits per digit parameter will specify
this.

ltc mp digit

Depending on the archtitecture ltc mp digit is either a 32- or 64-bit long unsigned data type.

18.5.2 ECC Functions

The ECC system in LibTomCrypt is based off of the NIST recommended curves over GF (p) and is
used to implement EC-DSA and EC-DH. The ECC functions work with the ecc point structure
and assume the points are stored in Jacobian projective format.

/** A point on a ECC curve, stored in Jacobian format such

that (x,y,z) => (x/z^2, y/z^3, 1) when interpreted as affine */

typedef struct {

/** The x co-ordinate */

void *x;

/** The y co-ordinate */

void *y;

/** The z co-ordinate */

void *z;

} ecc_point;
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All ECC functions must use this mapping system. The only exception is when you remap
all ECC callbacks which will allow you to have more control over how the ECC math will be
implemented. Out of the box you only have three parameters per point to use (x, y, z) however,
these are just void pointers. They could point to anything you want. The only further exception is
the export functions which expects the values to be in affine format.

Point Multiply

This will multiply the point G by the scalar k and store the result in the point R. The value should
be mapped to affine only if map is set to one.

Point Addition

This will add the point P to the point Q and store it in the point R. The mp parameter is the b
value from the montgomery setup() call. The input points may be in either affine (with z = 1) or
projective format and the output point is always projective.

Point Mapping

This will map the point P back from projective to affine. The output point P must be of the form
(x, y, 1).

Shamir’s Trick

To accelerate EC–DSA verification the library provides a built–in function called ltc ecc mul2add().
This performs two point multiplications and an addition in roughly the time of one point multipli-
cation. It is called from ecc verify hash() if an accelerator is not present. The acclerator function
must allow the points to overlap (e.g., A ← k1A + k2B) and must return the final point in affine
format.

18.5.3 RSA Functions

The RSA Modular Exponentiation (ME) function is used by the RSA API to perform exponenti-
ations for private and public key operations. In particular for private key operations it uses the
CRT approach to lower the time required. It is passed an RSA key with the following format.

/** RSA PKCS style key */

typedef struct Rsa_key {

/** Type of key, PK_PRIVATE or PK_PUBLIC */

int type;

/** The public exponent */

void *e;

/** The private exponent */

void *d;

/** The modulus */

void *N;

/** The p factor of N */

void *p;
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/** The q factor of N */

void *q;

/** The 1/q mod p CRT param */

void *qP;

/** The d mod (p - 1) CRT param */

void *dP;

/** The d mod (q - 1) CRT param */

void *dQ;

} rsa_key;

The call reads the in buffer as an unsigned char array in big endian format. Then it performs
the exponentiation and stores the output in big endian format to the out buffer. The output must
be zero padded (leading bytes) so that the length of the output matches the length of the modulus
(in bytes). For example, for RSA–1024 the output is always 128 bytes regardless of how small the
numerical value of the exponentiation is.

Since the function is given the entire RSA key (for private keys only) CRT is possible as pre-
scribed in the PKCS #1 v2.1 specification.

18.6 Deprecated API functions

18.6.1 After v1.18.0

void init_LTM(void);

void init_TFM(void);

void init_GMP(void);

These three MPI init functions have been introduced in version 1.18.0 and have been deprecated
in the same version in favor of crypt mp init().
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